Loading…

Copula-based drought risk analysis on rainfed agriculture under stationary and non-stationary settings

Assessing the risk to the agricultural system is important for agricultural sustainability. The present study analyses agricultural drought risk with respect to different drought severities. Different drought indices - namely, Standardized Precipitation Evapotranspiration Index (SPEI), Standardized...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological sciences journal 2022-08, Vol.67 (11), p.1683-1701
Main Authors: Das, Subhadarsini, Das, Jew, Umamahesh, N. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-715c1fd68a403a4e9db63e140f592ba2b025de921c23fe79dc334dca1a7ab9923
cites cdi_FETCH-LOGICAL-c338t-715c1fd68a403a4e9db63e140f592ba2b025de921c23fe79dc334dca1a7ab9923
container_end_page 1701
container_issue 11
container_start_page 1683
container_title Hydrological sciences journal
container_volume 67
creator Das, Subhadarsini
Das, Jew
Umamahesh, N. V.
description Assessing the risk to the agricultural system is important for agricultural sustainability. The present study analyses agricultural drought risk with respect to different drought severities. Different drought indices - namely, Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil moisture Index (SSI), Vegetation Condition Index (VCI), and Temperature Condition Index (TCI) - are used to evaluate the conditional probability. Non-stationary analysis is carried out for SPEI and SSI to incorporate the impact of large-scale oscillations and regional hydrological variability. Copula analysis is performed between drought conditions and various crop yield anomalies over Maharashtra, India, during 1998-2015. The outcomes suggest that SPEI is a significant drought indicator over the maximum number of districts in all the crops. Sea Surface Temperature (SST) and Indian Summer Monsoon Index (ISMI) are selected as suitable covariates to model the non-stationarity in the SPEI time series. The drought risk is estimated to increase with drought severity for all of the selected crops. It is observed that the exclusion of non-stationarity will underestimate the agricultural risk.
doi_str_mv 10.1080/02626667.2022.2079416
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2719620306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719620306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-715c1fd68a403a4e9db63e140f592ba2b025de921c23fe79dc334dca1a7ab9923</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43pqP3WxzU4pfUPCi5zC7SWrqNqlJFum_N6UVPHmZgeF5h5kHoWtKZpTMyS1hggkh2hkjjJXSypqKEzRhtCEVr3lziiZ7ptpD5-gipTUhvJaCT5BdhO04QNVBMhrrGMbVR8bRpU8MHoZdcgkHjyM4bwsAq-j6cchjNHj02kScMmQXPMRdCWjsg6_-jJLJ2flVukRnFoZkro59it4fH94Wz9Xy9ellcb-ses7nuWpp01OrxRxqwqE2UneCG1oT20jWAesIa7SRjPaMW9NKXWK17oFCC52UjE_RzWHvNoav0aSs1mGM5ZGkWEulYIQTUajmQPUxpBSNVdvoNuVeRYnaK1W_StVeqToqLbm7Q67ICHED3yEOWmXYDSHaCL53SfH_V_wAASV_ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719620306</pqid></control><display><type>article</type><title>Copula-based drought risk analysis on rainfed agriculture under stationary and non-stationary settings</title><source>Taylor and Francis Science and Technology Collection</source><creator>Das, Subhadarsini ; Das, Jew ; Umamahesh, N. V.</creator><creatorcontrib>Das, Subhadarsini ; Das, Jew ; Umamahesh, N. V.</creatorcontrib><description>Assessing the risk to the agricultural system is important for agricultural sustainability. The present study analyses agricultural drought risk with respect to different drought severities. Different drought indices - namely, Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil moisture Index (SSI), Vegetation Condition Index (VCI), and Temperature Condition Index (TCI) - are used to evaluate the conditional probability. Non-stationary analysis is carried out for SPEI and SSI to incorporate the impact of large-scale oscillations and regional hydrological variability. Copula analysis is performed between drought conditions and various crop yield anomalies over Maharashtra, India, during 1998-2015. The outcomes suggest that SPEI is a significant drought indicator over the maximum number of districts in all the crops. Sea Surface Temperature (SST) and Indian Summer Monsoon Index (ISMI) are selected as suitable covariates to model the non-stationarity in the SPEI time series. The drought risk is estimated to increase with drought severity for all of the selected crops. It is observed that the exclusion of non-stationarity will underestimate the agricultural risk.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2022.2079416</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Agricultural drought ; agricultural risk ; Analysis ; Anomalies ; Conditional probability ; copula ; Crop yield ; Crops ; Drought ; Drought conditions ; Drought index ; Environmental risk ; Evapotranspiration ; Evapotranspiration-precipitation relationships ; Farming systems ; Hydrologic analysis ; Hydrology ; India ; Moisture effects ; Moisture index ; Oscillations ; Probability theory ; rainfed crops ; Rainfed farming ; Risk analysis ; Risk assessment ; Sea surface ; Sea surface temperature ; Soil moisture ; Soil temperature ; Summer monsoon ; Surface temperature ; Sustainability ; Sustainable agriculture ; Vegetation</subject><ispartof>Hydrological sciences journal, 2022-08, Vol.67 (11), p.1683-1701</ispartof><rights>2022 IAHS 2022</rights><rights>2022 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-715c1fd68a403a4e9db63e140f592ba2b025de921c23fe79dc334dca1a7ab9923</citedby><cites>FETCH-LOGICAL-c338t-715c1fd68a403a4e9db63e140f592ba2b025de921c23fe79dc334dca1a7ab9923</cites><orcidid>0000-0003-0460-8956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Subhadarsini</creatorcontrib><creatorcontrib>Das, Jew</creatorcontrib><creatorcontrib>Umamahesh, N. V.</creatorcontrib><title>Copula-based drought risk analysis on rainfed agriculture under stationary and non-stationary settings</title><title>Hydrological sciences journal</title><description>Assessing the risk to the agricultural system is important for agricultural sustainability. The present study analyses agricultural drought risk with respect to different drought severities. Different drought indices - namely, Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil moisture Index (SSI), Vegetation Condition Index (VCI), and Temperature Condition Index (TCI) - are used to evaluate the conditional probability. Non-stationary analysis is carried out for SPEI and SSI to incorporate the impact of large-scale oscillations and regional hydrological variability. Copula analysis is performed between drought conditions and various crop yield anomalies over Maharashtra, India, during 1998-2015. The outcomes suggest that SPEI is a significant drought indicator over the maximum number of districts in all the crops. Sea Surface Temperature (SST) and Indian Summer Monsoon Index (ISMI) are selected as suitable covariates to model the non-stationarity in the SPEI time series. The drought risk is estimated to increase with drought severity for all of the selected crops. It is observed that the exclusion of non-stationarity will underestimate the agricultural risk.</description><subject>Agricultural drought</subject><subject>agricultural risk</subject><subject>Analysis</subject><subject>Anomalies</subject><subject>Conditional probability</subject><subject>copula</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Drought</subject><subject>Drought conditions</subject><subject>Drought index</subject><subject>Environmental risk</subject><subject>Evapotranspiration</subject><subject>Evapotranspiration-precipitation relationships</subject><subject>Farming systems</subject><subject>Hydrologic analysis</subject><subject>Hydrology</subject><subject>India</subject><subject>Moisture effects</subject><subject>Moisture index</subject><subject>Oscillations</subject><subject>Probability theory</subject><subject>rainfed crops</subject><subject>Rainfed farming</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Soil moisture</subject><subject>Soil temperature</subject><subject>Summer monsoon</subject><subject>Surface temperature</subject><subject>Sustainability</subject><subject>Sustainable agriculture</subject><subject>Vegetation</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43pqP3WxzU4pfUPCi5zC7SWrqNqlJFum_N6UVPHmZgeF5h5kHoWtKZpTMyS1hggkh2hkjjJXSypqKEzRhtCEVr3lziiZ7ptpD5-gipTUhvJaCT5BdhO04QNVBMhrrGMbVR8bRpU8MHoZdcgkHjyM4bwsAq-j6cchjNHj02kScMmQXPMRdCWjsg6_-jJLJ2flVukRnFoZkro59it4fH94Wz9Xy9ellcb-ses7nuWpp01OrxRxqwqE2UneCG1oT20jWAesIa7SRjPaMW9NKXWK17oFCC52UjE_RzWHvNoav0aSs1mGM5ZGkWEulYIQTUajmQPUxpBSNVdvoNuVeRYnaK1W_StVeqToqLbm7Q67ICHED3yEOWmXYDSHaCL53SfH_V_wAASV_ag</recordid><startdate>20220818</startdate><enddate>20220818</enddate><creator>Das, Subhadarsini</creator><creator>Das, Jew</creator><creator>Umamahesh, N. V.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0460-8956</orcidid></search><sort><creationdate>20220818</creationdate><title>Copula-based drought risk analysis on rainfed agriculture under stationary and non-stationary settings</title><author>Das, Subhadarsini ; Das, Jew ; Umamahesh, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-715c1fd68a403a4e9db63e140f592ba2b025de921c23fe79dc334dca1a7ab9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural drought</topic><topic>agricultural risk</topic><topic>Analysis</topic><topic>Anomalies</topic><topic>Conditional probability</topic><topic>copula</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Drought</topic><topic>Drought conditions</topic><topic>Drought index</topic><topic>Environmental risk</topic><topic>Evapotranspiration</topic><topic>Evapotranspiration-precipitation relationships</topic><topic>Farming systems</topic><topic>Hydrologic analysis</topic><topic>Hydrology</topic><topic>India</topic><topic>Moisture effects</topic><topic>Moisture index</topic><topic>Oscillations</topic><topic>Probability theory</topic><topic>rainfed crops</topic><topic>Rainfed farming</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Soil moisture</topic><topic>Soil temperature</topic><topic>Summer monsoon</topic><topic>Surface temperature</topic><topic>Sustainability</topic><topic>Sustainable agriculture</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Subhadarsini</creatorcontrib><creatorcontrib>Das, Jew</creatorcontrib><creatorcontrib>Umamahesh, N. V.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Subhadarsini</au><au>Das, Jew</au><au>Umamahesh, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copula-based drought risk analysis on rainfed agriculture under stationary and non-stationary settings</atitle><jtitle>Hydrological sciences journal</jtitle><date>2022-08-18</date><risdate>2022</risdate><volume>67</volume><issue>11</issue><spage>1683</spage><epage>1701</epage><pages>1683-1701</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>Assessing the risk to the agricultural system is important for agricultural sustainability. The present study analyses agricultural drought risk with respect to different drought severities. Different drought indices - namely, Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Soil moisture Index (SSI), Vegetation Condition Index (VCI), and Temperature Condition Index (TCI) - are used to evaluate the conditional probability. Non-stationary analysis is carried out for SPEI and SSI to incorporate the impact of large-scale oscillations and regional hydrological variability. Copula analysis is performed between drought conditions and various crop yield anomalies over Maharashtra, India, during 1998-2015. The outcomes suggest that SPEI is a significant drought indicator over the maximum number of districts in all the crops. Sea Surface Temperature (SST) and Indian Summer Monsoon Index (ISMI) are selected as suitable covariates to model the non-stationarity in the SPEI time series. The drought risk is estimated to increase with drought severity for all of the selected crops. It is observed that the exclusion of non-stationarity will underestimate the agricultural risk.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02626667.2022.2079416</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0460-8956</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0262-6667
ispartof Hydrological sciences journal, 2022-08, Vol.67 (11), p.1683-1701
issn 0262-6667
2150-3435
language eng
recordid cdi_proquest_journals_2719620306
source Taylor and Francis Science and Technology Collection
subjects Agricultural drought
agricultural risk
Analysis
Anomalies
Conditional probability
copula
Crop yield
Crops
Drought
Drought conditions
Drought index
Environmental risk
Evapotranspiration
Evapotranspiration-precipitation relationships
Farming systems
Hydrologic analysis
Hydrology
India
Moisture effects
Moisture index
Oscillations
Probability theory
rainfed crops
Rainfed farming
Risk analysis
Risk assessment
Sea surface
Sea surface temperature
Soil moisture
Soil temperature
Summer monsoon
Surface temperature
Sustainability
Sustainable agriculture
Vegetation
title Copula-based drought risk analysis on rainfed agriculture under stationary and non-stationary settings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copula-based%20drought%20risk%20analysis%20on%20rainfed%20agriculture%20under%20stationary%20and%20non-stationary%20settings&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Das,%20Subhadarsini&rft.date=2022-08-18&rft.volume=67&rft.issue=11&rft.spage=1683&rft.epage=1701&rft.pages=1683-1701&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2022.2079416&rft_dat=%3Cproquest_infor%3E2719620306%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-715c1fd68a403a4e9db63e140f592ba2b025de921c23fe79dc334dca1a7ab9923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719620306&rft_id=info:pmid/&rfr_iscdi=true