Loading…

LDCT image quality improvement algorithm based on optimal wavelet basis and MCA

This paper puts forward a denoising algorithm for low-dose computed tomography (LDCT) image based on optimal wavelet basis and morphological component analysis, which aims to solve the problem of severe noise and artifacts in LDCT imaging. First, the high-frequency (HF) component coefficients in the...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing image and video processing, 2022-11, Vol.16 (8), p.2303-2311
Main Authors: Kang, Jiaqi, Gui, Zhiguo, Liu, Yi, Wang, Zhenyu, Li, Zhiyuan, Lu, Jing, Zhang, Quan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c249t-7748793e665578cc6cf4853d0c14d1dd560b429d216ce1cc11cf6c9a62757e5d3
cites cdi_FETCH-LOGICAL-c249t-7748793e665578cc6cf4853d0c14d1dd560b429d216ce1cc11cf6c9a62757e5d3
container_end_page 2311
container_issue 8
container_start_page 2303
container_title Signal, image and video processing
container_volume 16
creator Kang, Jiaqi
Gui, Zhiguo
Liu, Yi
Wang, Zhenyu
Li, Zhiyuan
Lu, Jing
Zhang, Quan
description This paper puts forward a denoising algorithm for low-dose computed tomography (LDCT) image based on optimal wavelet basis and morphological component analysis, which aims to solve the problem of severe noise and artifacts in LDCT imaging. First, the high-frequency (HF) component coefficients in the horizontal, vertical, and diagonal directions of LDCT after the stationary wavelet transform (SWT) are weighted to obtain the wavelet basis selection coefficients, and the wavelet basis with the smallest wavelet select coefficient is selected as the optimal wavelet basis. Second, the artifacts are processed using the MCA algorithm based on online dictionary learning (ODL) for the HF component. Third, the improved LDCT images are obtained using the inverse stationary wavelet transform (ISWT), which uses the low-frequency (LF) components and the denoised HF component. The extensive experiments on simulated and real data demonstrated the images denoised using the optimal wavelet basis algorithm showed the highest objective evaluation index, followed by the other wavelet-based algorithms. Additionally, our proposed method outperformed several classical denoising methods on both quantitative and qualitative assessments. It was therefore verified that the validity of wavelet selection and the feasibility of the proposed algorithm.
doi_str_mv 10.1007/s11760-022-02196-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719732575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719732575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-7748793e665578cc6cf4853d0c14d1dd560b429d216ce1cc11cf6c9a62757e5d3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITGN_gFMkzoU4aZL2OJWPIQ3tMs5RlqSjU9duSTa0f09GEdywZNmW33u2HkK3QO6BEPkQAKQgGaE0JZQigws0gkKwDCTA5W9P2DWahLAhKRiVhShGaDF_rJa42eq1w_uDbpt4StPO90e3dV3Eul33vokfW7zSwVncd7jfxYRv8ac-utbF86IJWHcWv1XTG3RV6za4yU8do_fnp2U1y-aLl9dqOs8MzcuYSZkXsmROCM5lYYwwdV5wZomB3IK1XJBVTktLQRgHxgCYWphSCyq5dNyyMbobdNOr-4MLUW36g-_SSUUllJJRLnlC0QFlfB-Cd7Xa-fS7Pykg6uydGrxTyTv17Z2CRGIDKSRwt3b-T_of1hdwDXAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719732575</pqid></control><display><type>article</type><title>LDCT image quality improvement algorithm based on optimal wavelet basis and MCA</title><source>Springer Nature</source><creator>Kang, Jiaqi ; Gui, Zhiguo ; Liu, Yi ; Wang, Zhenyu ; Li, Zhiyuan ; Lu, Jing ; Zhang, Quan</creator><creatorcontrib>Kang, Jiaqi ; Gui, Zhiguo ; Liu, Yi ; Wang, Zhenyu ; Li, Zhiyuan ; Lu, Jing ; Zhang, Quan</creatorcontrib><description>This paper puts forward a denoising algorithm for low-dose computed tomography (LDCT) image based on optimal wavelet basis and morphological component analysis, which aims to solve the problem of severe noise and artifacts in LDCT imaging. First, the high-frequency (HF) component coefficients in the horizontal, vertical, and diagonal directions of LDCT after the stationary wavelet transform (SWT) are weighted to obtain the wavelet basis selection coefficients, and the wavelet basis with the smallest wavelet select coefficient is selected as the optimal wavelet basis. Second, the artifacts are processed using the MCA algorithm based on online dictionary learning (ODL) for the HF component. Third, the improved LDCT images are obtained using the inverse stationary wavelet transform (ISWT), which uses the low-frequency (LF) components and the denoised HF component. The extensive experiments on simulated and real data demonstrated the images denoised using the optimal wavelet basis algorithm showed the highest objective evaluation index, followed by the other wavelet-based algorithms. Additionally, our proposed method outperformed several classical denoising methods on both quantitative and qualitative assessments. It was therefore verified that the validity of wavelet selection and the feasibility of the proposed algorithm.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-022-02196-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Coefficients ; Computed tomography ; Computer Imaging ; Computer Science ; Image Processing and Computer Vision ; Image quality ; Machine learning ; Multimedia Information Systems ; Noise reduction ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision ; Wavelet analysis ; Wavelet transforms</subject><ispartof>Signal, image and video processing, 2022-11, Vol.16 (8), p.2303-2311</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-7748793e665578cc6cf4853d0c14d1dd560b429d216ce1cc11cf6c9a62757e5d3</citedby><cites>FETCH-LOGICAL-c249t-7748793e665578cc6cf4853d0c14d1dd560b429d216ce1cc11cf6c9a62757e5d3</cites><orcidid>0000-0001-9148-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kang, Jiaqi</creatorcontrib><creatorcontrib>Gui, Zhiguo</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Wang, Zhenyu</creatorcontrib><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Zhang, Quan</creatorcontrib><title>LDCT image quality improvement algorithm based on optimal wavelet basis and MCA</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>This paper puts forward a denoising algorithm for low-dose computed tomography (LDCT) image based on optimal wavelet basis and morphological component analysis, which aims to solve the problem of severe noise and artifacts in LDCT imaging. First, the high-frequency (HF) component coefficients in the horizontal, vertical, and diagonal directions of LDCT after the stationary wavelet transform (SWT) are weighted to obtain the wavelet basis selection coefficients, and the wavelet basis with the smallest wavelet select coefficient is selected as the optimal wavelet basis. Second, the artifacts are processed using the MCA algorithm based on online dictionary learning (ODL) for the HF component. Third, the improved LDCT images are obtained using the inverse stationary wavelet transform (ISWT), which uses the low-frequency (LF) components and the denoised HF component. The extensive experiments on simulated and real data demonstrated the images denoised using the optimal wavelet basis algorithm showed the highest objective evaluation index, followed by the other wavelet-based algorithms. Additionally, our proposed method outperformed several classical denoising methods on both quantitative and qualitative assessments. It was therefore verified that the validity of wavelet selection and the feasibility of the proposed algorithm.</description><subject>Algorithms</subject><subject>Coefficients</subject><subject>Computed tomography</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Image quality</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Noise reduction</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITGN_gFMkzoU4aZL2OJWPIQ3tMs5RlqSjU9duSTa0f09GEdywZNmW33u2HkK3QO6BEPkQAKQgGaE0JZQigws0gkKwDCTA5W9P2DWahLAhKRiVhShGaDF_rJa42eq1w_uDbpt4StPO90e3dV3Eul33vokfW7zSwVncd7jfxYRv8ac-utbF86IJWHcWv1XTG3RV6za4yU8do_fnp2U1y-aLl9dqOs8MzcuYSZkXsmROCM5lYYwwdV5wZomB3IK1XJBVTktLQRgHxgCYWphSCyq5dNyyMbobdNOr-4MLUW36g-_SSUUllJJRLnlC0QFlfB-Cd7Xa-fS7Pykg6uydGrxTyTv17Z2CRGIDKSRwt3b-T_of1hdwDXAg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kang, Jiaqi</creator><creator>Gui, Zhiguo</creator><creator>Liu, Yi</creator><creator>Wang, Zhenyu</creator><creator>Li, Zhiyuan</creator><creator>Lu, Jing</creator><creator>Zhang, Quan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9148-6621</orcidid></search><sort><creationdate>20221101</creationdate><title>LDCT image quality improvement algorithm based on optimal wavelet basis and MCA</title><author>Kang, Jiaqi ; Gui, Zhiguo ; Liu, Yi ; Wang, Zhenyu ; Li, Zhiyuan ; Lu, Jing ; Zhang, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-7748793e665578cc6cf4853d0c14d1dd560b429d216ce1cc11cf6c9a62757e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coefficients</topic><topic>Computed tomography</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Image quality</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Noise reduction</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jiaqi</creatorcontrib><creatorcontrib>Gui, Zhiguo</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Wang, Zhenyu</creatorcontrib><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>Zhang, Quan</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jiaqi</au><au>Gui, Zhiguo</au><au>Liu, Yi</au><au>Wang, Zhenyu</au><au>Li, Zhiyuan</au><au>Lu, Jing</au><au>Zhang, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LDCT image quality improvement algorithm based on optimal wavelet basis and MCA</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>16</volume><issue>8</issue><spage>2303</spage><epage>2311</epage><pages>2303-2311</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>This paper puts forward a denoising algorithm for low-dose computed tomography (LDCT) image based on optimal wavelet basis and morphological component analysis, which aims to solve the problem of severe noise and artifacts in LDCT imaging. First, the high-frequency (HF) component coefficients in the horizontal, vertical, and diagonal directions of LDCT after the stationary wavelet transform (SWT) are weighted to obtain the wavelet basis selection coefficients, and the wavelet basis with the smallest wavelet select coefficient is selected as the optimal wavelet basis. Second, the artifacts are processed using the MCA algorithm based on online dictionary learning (ODL) for the HF component. Third, the improved LDCT images are obtained using the inverse stationary wavelet transform (ISWT), which uses the low-frequency (LF) components and the denoised HF component. The extensive experiments on simulated and real data demonstrated the images denoised using the optimal wavelet basis algorithm showed the highest objective evaluation index, followed by the other wavelet-based algorithms. Additionally, our proposed method outperformed several classical denoising methods on both quantitative and qualitative assessments. It was therefore verified that the validity of wavelet selection and the feasibility of the proposed algorithm.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-022-02196-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9148-6621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2022-11, Vol.16 (8), p.2303-2311
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2719732575
source Springer Nature
subjects Algorithms
Coefficients
Computed tomography
Computer Imaging
Computer Science
Image Processing and Computer Vision
Image quality
Machine learning
Multimedia Information Systems
Noise reduction
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Vision
Wavelet analysis
Wavelet transforms
title LDCT image quality improvement algorithm based on optimal wavelet basis and MCA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LDCT%20image%20quality%20improvement%20algorithm%20based%20on%20optimal%20wavelet%20basis%20and%20MCA&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Kang,%20Jiaqi&rft.date=2022-11-01&rft.volume=16&rft.issue=8&rft.spage=2303&rft.epage=2311&rft.pages=2303-2311&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-022-02196-1&rft_dat=%3Cproquest_cross%3E2719732575%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-7748793e665578cc6cf4853d0c14d1dd560b429d216ce1cc11cf6c9a62757e5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2719732575&rft_id=info:pmid/&rfr_iscdi=true