Loading…

Multi‐stage metamorphism of ultrahigh‐temperature Mg‐Al granulites during Gondwana assembly: Evidence from southern India

The Southern Granulite Terrane (SGT) in India hosts granulite facies rocks metamorphosed at ultra‐high temperature (UHT) conditions in the various crustal blocks, as well as within the Palghat‐Cauvery Suture Zone (PCSZ), that is considered as a trace of the Late Neoproterozoic—Cambrian Gondwana sutu...

Full description

Saved in:
Bibliographic Details
Published in:Geological journal (Chichester, England) England), 2022-10, Vol.57 (10), p.4300-4324
Main Authors: Yu, Bing, Santosh, M., Tsunogae, Toshiaki, Yang, Cheng‐Xue, Kim, Sung Won
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a2745-8df672b1a4293447340d8bcc9d51772e9e65df4b22a9aec7c63861cb19283cb33
container_end_page 4324
container_issue 10
container_start_page 4300
container_title Geological journal (Chichester, England)
container_volume 57
creator Yu, Bing
Santosh, M.
Tsunogae, Toshiaki
Yang, Cheng‐Xue
Kim, Sung Won
description The Southern Granulite Terrane (SGT) in India hosts granulite facies rocks metamorphosed at ultra‐high temperature (UHT) conditions in the various crustal blocks, as well as within the Palghat‐Cauvery Suture Zone (PCSZ), that is considered as a trace of the Late Neoproterozoic—Cambrian Gondwana suture. Here we investigate UHT granulites from the northern margin of the Madurai Block adjacent to the PCSZ where Mg‐Al‐rich granulites are exposed. We identify sodic gedrite + kyanite in these rocks as the high‐pressure prograde stage assemblage, followed by sillimanite‐garnet‐orthopyroxene that formed during pressure decrease and temperature increase. The rare remnant gedrite is also stable at the near‐peak UHT metamorphism until it was replaced by sapphirine. The rocks subsequently underwent decompression that formed sapphirine + cordierite and sapphirine + plagioclase symplectite around sillimanite. Dehydration during decompression generated orthopyroxene‐sillimanite‐quartz assemblage with the appearance of sapphirine, defining the diagnostic mineral assemblage indicative of peak UHT metamorphism (T > 900°C) at relatively high‐pressure (P > 9 kbar). The UHT peak metamorphism in this region is consistent with the results of P–T calculations using conventional geothermometers and phase equilibrium modelling (T up to 1,050°C, P over12 kbar). Zircon and monazite geochronology on the UHT metapelites indicate distinct stages. Detrital zircon grains in the metasediments indicate protolith from ca. 2.5 Ga igneous source and the metamorphic overgrowths yield 206Pb/238U mean ages concentrated at ca. 550–520 Ma. Monazite ages define another younger group 206Pb/238U mean ages at ca. 450 Ma. The prograde high‐pressure granulite‐facies metamorphism and following UHT event correlate with the subduction‐collision tectonics at 550–500 Ma associated with the final stage of amalgamation of the Gondwana supercontinent, while the 420–460 Ma monazite age records a later hydration at the post‐orogenic stage, possibly associated with deep shearing and fluid influx. Left panel: thin section photomicrographs of the ultrahigh‐temperature granulites investigated in this study. Right panel: Schematic model illustrating the plate tectonic setting of ultrahigh‐temperature metamorphism associated with Gondwana assembly and subsequent exhumation and hydration.
doi_str_mv 10.1002/gj.4545
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2720209904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720209904</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2745-8df672b1a4293447340d8bcc9d51772e9e65df4b22a9aec7c63861cb19283cb33</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpiFewxMCAUmzHiRO2CpVS1IoFZstJLomjxAl2QtUJHoFn5ElIKSvTne4-3Uk_QpeUzCgh7LaoZjzgwRGaUBLHHiU-P0YTQgQb-4CcojPnKkIoJZxO0MdmqHv9_fnlelUAbqBXTWu7UrsGtzkel1aVuihH0UPTgVX9YAFvinEwr3FhlRlq3YPD2WC1KfCyNdlWGYWVc9Ak9e4OL951BiYFnNu2wa4d-hKswSuTaXWOTnJVO7j4q1P0-rB4uX_01s_L1f187SkmeOBFWR4KllDFWexzLnxOsihJ0zgLqBAMYgiDLOcJYypWkIo09KOQpgmNWeSnie9P0dXhbmfbtwFcL6t2sGZ8KZlghI1RET6q64NKbeuchVx2VjfK7iQlcp-uLCq5T3eUNwe51TXs_mNy-fSrfwDs7X7J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720209904</pqid></control><display><type>article</type><title>Multi‐stage metamorphism of ultrahigh‐temperature Mg‐Al granulites during Gondwana assembly: Evidence from southern India</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yu, Bing ; Santosh, M. ; Tsunogae, Toshiaki ; Yang, Cheng‐Xue ; Kim, Sung Won</creator><creatorcontrib>Yu, Bing ; Santosh, M. ; Tsunogae, Toshiaki ; Yang, Cheng‐Xue ; Kim, Sung Won</creatorcontrib><description>The Southern Granulite Terrane (SGT) in India hosts granulite facies rocks metamorphosed at ultra‐high temperature (UHT) conditions in the various crustal blocks, as well as within the Palghat‐Cauvery Suture Zone (PCSZ), that is considered as a trace of the Late Neoproterozoic—Cambrian Gondwana suture. Here we investigate UHT granulites from the northern margin of the Madurai Block adjacent to the PCSZ where Mg‐Al‐rich granulites are exposed. We identify sodic gedrite + kyanite in these rocks as the high‐pressure prograde stage assemblage, followed by sillimanite‐garnet‐orthopyroxene that formed during pressure decrease and temperature increase. The rare remnant gedrite is also stable at the near‐peak UHT metamorphism until it was replaced by sapphirine. The rocks subsequently underwent decompression that formed sapphirine + cordierite and sapphirine + plagioclase symplectite around sillimanite. Dehydration during decompression generated orthopyroxene‐sillimanite‐quartz assemblage with the appearance of sapphirine, defining the diagnostic mineral assemblage indicative of peak UHT metamorphism (T &gt; 900°C) at relatively high‐pressure (P &gt; 9 kbar). The UHT peak metamorphism in this region is consistent with the results of P–T calculations using conventional geothermometers and phase equilibrium modelling (T up to 1,050°C, P over12 kbar). Zircon and monazite geochronology on the UHT metapelites indicate distinct stages. Detrital zircon grains in the metasediments indicate protolith from ca. 2.5 Ga igneous source and the metamorphic overgrowths yield 206Pb/238U mean ages concentrated at ca. 550–520 Ma. Monazite ages define another younger group 206Pb/238U mean ages at ca. 450 Ma. The prograde high‐pressure granulite‐facies metamorphism and following UHT event correlate with the subduction‐collision tectonics at 550–500 Ma associated with the final stage of amalgamation of the Gondwana supercontinent, while the 420–460 Ma monazite age records a later hydration at the post‐orogenic stage, possibly associated with deep shearing and fluid influx. Left panel: thin section photomicrographs of the ultrahigh‐temperature granulites investigated in this study. Right panel: Schematic model illustrating the plate tectonic setting of ultrahigh‐temperature metamorphism associated with Gondwana assembly and subsequent exhumation and hydration.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.4545</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Age ; Aluminum ; Cambrian ; Cordierite ; Crystals ; Decompression ; Dehydration ; Garnet ; Geochronology ; Geochronometry ; Gondwana ; Gondwana supercontinent ; High temperature ; Isotopes ; Kyanite ; Lead isotopes ; Magnesium ; Metamorphism ; Metamorphism (geology) ; mg‐Al granulite ; Mineral assemblages ; Monazite ; Orogeny ; Phase equilibria ; Plagioclase ; Pressure ; Rock ; Rocks ; Sedimentary facies ; Shearing ; Sillimanite ; Subduction ; Subduction (geology) ; Tectonics ; Temperature ; Ultrahigh temperature ; ultrahigh‐temperature metamorphism ; Zircon ; zircon and monazite geochronology</subject><ispartof>Geological journal (Chichester, England), 2022-10, Vol.57 (10), p.4300-4324</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a2745-8df672b1a4293447340d8bcc9d51772e9e65df4b22a9aec7c63861cb19283cb33</cites><orcidid>0000-0002-1073-8477 ; 0000-0003-1606-5717 ; 0000-0003-3640-6953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yu, Bing</creatorcontrib><creatorcontrib>Santosh, M.</creatorcontrib><creatorcontrib>Tsunogae, Toshiaki</creatorcontrib><creatorcontrib>Yang, Cheng‐Xue</creatorcontrib><creatorcontrib>Kim, Sung Won</creatorcontrib><title>Multi‐stage metamorphism of ultrahigh‐temperature Mg‐Al granulites during Gondwana assembly: Evidence from southern India</title><title>Geological journal (Chichester, England)</title><description>The Southern Granulite Terrane (SGT) in India hosts granulite facies rocks metamorphosed at ultra‐high temperature (UHT) conditions in the various crustal blocks, as well as within the Palghat‐Cauvery Suture Zone (PCSZ), that is considered as a trace of the Late Neoproterozoic—Cambrian Gondwana suture. Here we investigate UHT granulites from the northern margin of the Madurai Block adjacent to the PCSZ where Mg‐Al‐rich granulites are exposed. We identify sodic gedrite + kyanite in these rocks as the high‐pressure prograde stage assemblage, followed by sillimanite‐garnet‐orthopyroxene that formed during pressure decrease and temperature increase. The rare remnant gedrite is also stable at the near‐peak UHT metamorphism until it was replaced by sapphirine. The rocks subsequently underwent decompression that formed sapphirine + cordierite and sapphirine + plagioclase symplectite around sillimanite. Dehydration during decompression generated orthopyroxene‐sillimanite‐quartz assemblage with the appearance of sapphirine, defining the diagnostic mineral assemblage indicative of peak UHT metamorphism (T &gt; 900°C) at relatively high‐pressure (P &gt; 9 kbar). The UHT peak metamorphism in this region is consistent with the results of P–T calculations using conventional geothermometers and phase equilibrium modelling (T up to 1,050°C, P over12 kbar). Zircon and monazite geochronology on the UHT metapelites indicate distinct stages. Detrital zircon grains in the metasediments indicate protolith from ca. 2.5 Ga igneous source and the metamorphic overgrowths yield 206Pb/238U mean ages concentrated at ca. 550–520 Ma. Monazite ages define another younger group 206Pb/238U mean ages at ca. 450 Ma. The prograde high‐pressure granulite‐facies metamorphism and following UHT event correlate with the subduction‐collision tectonics at 550–500 Ma associated with the final stage of amalgamation of the Gondwana supercontinent, while the 420–460 Ma monazite age records a later hydration at the post‐orogenic stage, possibly associated with deep shearing and fluid influx. Left panel: thin section photomicrographs of the ultrahigh‐temperature granulites investigated in this study. Right panel: Schematic model illustrating the plate tectonic setting of ultrahigh‐temperature metamorphism associated with Gondwana assembly and subsequent exhumation and hydration.</description><subject>Age</subject><subject>Aluminum</subject><subject>Cambrian</subject><subject>Cordierite</subject><subject>Crystals</subject><subject>Decompression</subject><subject>Dehydration</subject><subject>Garnet</subject><subject>Geochronology</subject><subject>Geochronometry</subject><subject>Gondwana</subject><subject>Gondwana supercontinent</subject><subject>High temperature</subject><subject>Isotopes</subject><subject>Kyanite</subject><subject>Lead isotopes</subject><subject>Magnesium</subject><subject>Metamorphism</subject><subject>Metamorphism (geology)</subject><subject>mg‐Al granulite</subject><subject>Mineral assemblages</subject><subject>Monazite</subject><subject>Orogeny</subject><subject>Phase equilibria</subject><subject>Plagioclase</subject><subject>Pressure</subject><subject>Rock</subject><subject>Rocks</subject><subject>Sedimentary facies</subject><subject>Shearing</subject><subject>Sillimanite</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Tectonics</subject><subject>Temperature</subject><subject>Ultrahigh temperature</subject><subject>ultrahigh‐temperature metamorphism</subject><subject>Zircon</subject><subject>zircon and monazite geochronology</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpiFewxMCAUmzHiRO2CpVS1IoFZstJLomjxAl2QtUJHoFn5ElIKSvTne4-3Uk_QpeUzCgh7LaoZjzgwRGaUBLHHiU-P0YTQgQb-4CcojPnKkIoJZxO0MdmqHv9_fnlelUAbqBXTWu7UrsGtzkel1aVuihH0UPTgVX9YAFvinEwr3FhlRlq3YPD2WC1KfCyNdlWGYWVc9Ak9e4OL951BiYFnNu2wa4d-hKswSuTaXWOTnJVO7j4q1P0-rB4uX_01s_L1f187SkmeOBFWR4KllDFWexzLnxOsihJ0zgLqBAMYgiDLOcJYypWkIo09KOQpgmNWeSnie9P0dXhbmfbtwFcL6t2sGZ8KZlghI1RET6q64NKbeuchVx2VjfK7iQlcp-uLCq5T3eUNwe51TXs_mNy-fSrfwDs7X7J</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Yu, Bing</creator><creator>Santosh, M.</creator><creator>Tsunogae, Toshiaki</creator><creator>Yang, Cheng‐Xue</creator><creator>Kim, Sung Won</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1073-8477</orcidid><orcidid>https://orcid.org/0000-0003-1606-5717</orcidid><orcidid>https://orcid.org/0000-0003-3640-6953</orcidid></search><sort><creationdate>202210</creationdate><title>Multi‐stage metamorphism of ultrahigh‐temperature Mg‐Al granulites during Gondwana assembly: Evidence from southern India</title><author>Yu, Bing ; Santosh, M. ; Tsunogae, Toshiaki ; Yang, Cheng‐Xue ; Kim, Sung Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2745-8df672b1a4293447340d8bcc9d51772e9e65df4b22a9aec7c63861cb19283cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age</topic><topic>Aluminum</topic><topic>Cambrian</topic><topic>Cordierite</topic><topic>Crystals</topic><topic>Decompression</topic><topic>Dehydration</topic><topic>Garnet</topic><topic>Geochronology</topic><topic>Geochronometry</topic><topic>Gondwana</topic><topic>Gondwana supercontinent</topic><topic>High temperature</topic><topic>Isotopes</topic><topic>Kyanite</topic><topic>Lead isotopes</topic><topic>Magnesium</topic><topic>Metamorphism</topic><topic>Metamorphism (geology)</topic><topic>mg‐Al granulite</topic><topic>Mineral assemblages</topic><topic>Monazite</topic><topic>Orogeny</topic><topic>Phase equilibria</topic><topic>Plagioclase</topic><topic>Pressure</topic><topic>Rock</topic><topic>Rocks</topic><topic>Sedimentary facies</topic><topic>Shearing</topic><topic>Sillimanite</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Tectonics</topic><topic>Temperature</topic><topic>Ultrahigh temperature</topic><topic>ultrahigh‐temperature metamorphism</topic><topic>Zircon</topic><topic>zircon and monazite geochronology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bing</creatorcontrib><creatorcontrib>Santosh, M.</creatorcontrib><creatorcontrib>Tsunogae, Toshiaki</creatorcontrib><creatorcontrib>Yang, Cheng‐Xue</creatorcontrib><creatorcontrib>Kim, Sung Won</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Bing</au><au>Santosh, M.</au><au>Tsunogae, Toshiaki</au><au>Yang, Cheng‐Xue</au><au>Kim, Sung Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐stage metamorphism of ultrahigh‐temperature Mg‐Al granulites during Gondwana assembly: Evidence from southern India</atitle><jtitle>Geological journal (Chichester, England)</jtitle><date>2022-10</date><risdate>2022</risdate><volume>57</volume><issue>10</issue><spage>4300</spage><epage>4324</epage><pages>4300-4324</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><abstract>The Southern Granulite Terrane (SGT) in India hosts granulite facies rocks metamorphosed at ultra‐high temperature (UHT) conditions in the various crustal blocks, as well as within the Palghat‐Cauvery Suture Zone (PCSZ), that is considered as a trace of the Late Neoproterozoic—Cambrian Gondwana suture. Here we investigate UHT granulites from the northern margin of the Madurai Block adjacent to the PCSZ where Mg‐Al‐rich granulites are exposed. We identify sodic gedrite + kyanite in these rocks as the high‐pressure prograde stage assemblage, followed by sillimanite‐garnet‐orthopyroxene that formed during pressure decrease and temperature increase. The rare remnant gedrite is also stable at the near‐peak UHT metamorphism until it was replaced by sapphirine. The rocks subsequently underwent decompression that formed sapphirine + cordierite and sapphirine + plagioclase symplectite around sillimanite. Dehydration during decompression generated orthopyroxene‐sillimanite‐quartz assemblage with the appearance of sapphirine, defining the diagnostic mineral assemblage indicative of peak UHT metamorphism (T &gt; 900°C) at relatively high‐pressure (P &gt; 9 kbar). The UHT peak metamorphism in this region is consistent with the results of P–T calculations using conventional geothermometers and phase equilibrium modelling (T up to 1,050°C, P over12 kbar). Zircon and monazite geochronology on the UHT metapelites indicate distinct stages. Detrital zircon grains in the metasediments indicate protolith from ca. 2.5 Ga igneous source and the metamorphic overgrowths yield 206Pb/238U mean ages concentrated at ca. 550–520 Ma. Monazite ages define another younger group 206Pb/238U mean ages at ca. 450 Ma. The prograde high‐pressure granulite‐facies metamorphism and following UHT event correlate with the subduction‐collision tectonics at 550–500 Ma associated with the final stage of amalgamation of the Gondwana supercontinent, while the 420–460 Ma monazite age records a later hydration at the post‐orogenic stage, possibly associated with deep shearing and fluid influx. Left panel: thin section photomicrographs of the ultrahigh‐temperature granulites investigated in this study. Right panel: Schematic model illustrating the plate tectonic setting of ultrahigh‐temperature metamorphism associated with Gondwana assembly and subsequent exhumation and hydration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/gj.4545</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1073-8477</orcidid><orcidid>https://orcid.org/0000-0003-1606-5717</orcidid><orcidid>https://orcid.org/0000-0003-3640-6953</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0072-1050
ispartof Geological journal (Chichester, England), 2022-10, Vol.57 (10), p.4300-4324
issn 0072-1050
1099-1034
language eng
recordid cdi_proquest_journals_2720209904
source Wiley-Blackwell Read & Publish Collection
subjects Age
Aluminum
Cambrian
Cordierite
Crystals
Decompression
Dehydration
Garnet
Geochronology
Geochronometry
Gondwana
Gondwana supercontinent
High temperature
Isotopes
Kyanite
Lead isotopes
Magnesium
Metamorphism
Metamorphism (geology)
mg‐Al granulite
Mineral assemblages
Monazite
Orogeny
Phase equilibria
Plagioclase
Pressure
Rock
Rocks
Sedimentary facies
Shearing
Sillimanite
Subduction
Subduction (geology)
Tectonics
Temperature
Ultrahigh temperature
ultrahigh‐temperature metamorphism
Zircon
zircon and monazite geochronology
title Multi‐stage metamorphism of ultrahigh‐temperature Mg‐Al granulites during Gondwana assembly: Evidence from southern India
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90stage%20metamorphism%20of%20ultrahigh%E2%80%90temperature%20Mg%E2%80%90Al%20granulites%20during%20Gondwana%20assembly:%20Evidence%20from%20southern%20India&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Yu,%20Bing&rft.date=2022-10&rft.volume=57&rft.issue=10&rft.spage=4300&rft.epage=4324&rft.pages=4300-4324&rft.issn=0072-1050&rft.eissn=1099-1034&rft_id=info:doi/10.1002/gj.4545&rft_dat=%3Cproquest_cross%3E2720209904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2745-8df672b1a4293447340d8bcc9d51772e9e65df4b22a9aec7c63861cb19283cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2720209904&rft_id=info:pmid/&rfr_iscdi=true