Loading…

The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join

The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2022-12, Vol.105 (12), p.7302-7320
Main Authors: Topper, Brian, Tsekrekas, Elizabeth M., Greiner, Lucas, Youngman, Randall E., Kamitsos, Efstratios I., Möncke, Doris
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7320
container_issue 12
container_start_page 7302
container_title Journal of the American Ceramic Society
container_volume 105
creator Topper, Brian
Tsekrekas, Elizabeth M.
Greiner, Lucas
Youngman, Randall E.
Kamitsos, Efstratios I.
Möncke, Doris
description The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3 glasses in increments of x = 5, with 11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3 tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass of x = 40.
doi_str_mv 10.1111/jace.18699
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2720236415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720236415</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2259-b03336bd5157e16a817d8892c56de60651974ff596c0e305c6e80a69e6ba3e013</originalsourceid><addsrcrecordid>eNotkE1OwzAQRi0EEqWw4QSWWKd47Nqxl6Uqf6pUCZW15SSTNlEalzgRYscduCEnwW2ZzZuRvpmRHiG3wCYQ6752OU5AK2POyAikhIQbUOdkxBjjSao5uyRXIdRxBKOnI_K23iItBtfQzjdIfUmzKuyGfkurli4rvvr9_nmIEAdG0E3jQsBAXePbDe3jtu_6rc9853qkta_aa3JRuibgzT_H5P1xsZ4_J8vV08t8tkz2nEuTZEwIobJCgkwRlNOQFlobnktVoGJKgkmnZSmNyhkKJnOFmjllUGVOIAMxJnenu_vOfwwYelv7oWvjS8tTzrhQU5AxBafUZ9Xgl9131c51XxaYPQizB2H2KMy-zuaLYyf-ACqGX4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720236415</pqid></control><display><type>article</type><title>The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Topper, Brian ; Tsekrekas, Elizabeth M. ; Greiner, Lucas ; Youngman, Randall E. ; Kamitsos, Efstratios I. ; Möncke, Doris</creator><creatorcontrib>Topper, Brian ; Tsekrekas, Elizabeth M. ; Greiner, Lucas ; Youngman, Randall E. ; Kamitsos, Efstratios I. ; Möncke, Doris</creatorcontrib><description>The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3 glasses in increments of x = 5, with 11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3 tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass of x = 40.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18699</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Bismuth oxides ; Bismuth trioxide ; bismuthate ; borate ; Boron ; Boron oxides ; Glass transition temperature ; Infrared spectroscopy ; Lithium borates ; Lithium oxides ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Raman spectroscopy ; Spectrum analysis ; Tetrahedra</subject><ispartof>Journal of the American Ceramic Society, 2022-12, Vol.105 (12), p.7302-7320</ispartof><rights>2022 The American Ceramic Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5427-1269 ; 0000-0003-3434-8059 ; 0000-0002-4197-5520 ; 0000-0001-9417-8827 ; 0000-0002-6647-9865 ; 0000-0003-4667-2374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Topper, Brian</creatorcontrib><creatorcontrib>Tsekrekas, Elizabeth M.</creatorcontrib><creatorcontrib>Greiner, Lucas</creatorcontrib><creatorcontrib>Youngman, Randall E.</creatorcontrib><creatorcontrib>Kamitsos, Efstratios I.</creatorcontrib><creatorcontrib>Möncke, Doris</creatorcontrib><title>The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join</title><title>Journal of the American Ceramic Society</title><description>The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3 glasses in increments of x = 5, with 11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3 tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass of x = 40.</description><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>bismuthate</subject><subject>borate</subject><subject>Boron</subject><subject>Boron oxides</subject><subject>Glass transition temperature</subject><subject>Infrared spectroscopy</subject><subject>Lithium borates</subject><subject>Lithium oxides</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tetrahedra</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQRi0EEqWw4QSWWKd47Nqxl6Uqf6pUCZW15SSTNlEalzgRYscduCEnwW2ZzZuRvpmRHiG3wCYQ6752OU5AK2POyAikhIQbUOdkxBjjSao5uyRXIdRxBKOnI_K23iItBtfQzjdIfUmzKuyGfkurli4rvvr9_nmIEAdG0E3jQsBAXePbDe3jtu_6rc9853qkta_aa3JRuibgzT_H5P1xsZ4_J8vV08t8tkz2nEuTZEwIobJCgkwRlNOQFlobnktVoGJKgkmnZSmNyhkKJnOFmjllUGVOIAMxJnenu_vOfwwYelv7oWvjS8tTzrhQU5AxBafUZ9Xgl9131c51XxaYPQizB2H2KMy-zuaLYyf-ACqGX4s</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Topper, Brian</creator><creator>Tsekrekas, Elizabeth M.</creator><creator>Greiner, Lucas</creator><creator>Youngman, Randall E.</creator><creator>Kamitsos, Efstratios I.</creator><creator>Möncke, Doris</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5427-1269</orcidid><orcidid>https://orcid.org/0000-0003-3434-8059</orcidid><orcidid>https://orcid.org/0000-0002-4197-5520</orcidid><orcidid>https://orcid.org/0000-0001-9417-8827</orcidid><orcidid>https://orcid.org/0000-0002-6647-9865</orcidid><orcidid>https://orcid.org/0000-0003-4667-2374</orcidid></search><sort><creationdate>202212</creationdate><title>The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join</title><author>Topper, Brian ; Tsekrekas, Elizabeth M. ; Greiner, Lucas ; Youngman, Randall E. ; Kamitsos, Efstratios I. ; Möncke, Doris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2259-b03336bd5157e16a817d8892c56de60651974ff596c0e305c6e80a69e6ba3e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>bismuthate</topic><topic>borate</topic><topic>Boron</topic><topic>Boron oxides</topic><topic>Glass transition temperature</topic><topic>Infrared spectroscopy</topic><topic>Lithium borates</topic><topic>Lithium oxides</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Topper, Brian</creatorcontrib><creatorcontrib>Tsekrekas, Elizabeth M.</creatorcontrib><creatorcontrib>Greiner, Lucas</creatorcontrib><creatorcontrib>Youngman, Randall E.</creatorcontrib><creatorcontrib>Kamitsos, Efstratios I.</creatorcontrib><creatorcontrib>Möncke, Doris</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Topper, Brian</au><au>Tsekrekas, Elizabeth M.</au><au>Greiner, Lucas</au><au>Youngman, Randall E.</au><au>Kamitsos, Efstratios I.</au><au>Möncke, Doris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-12</date><risdate>2022</risdate><volume>105</volume><issue>12</issue><spage>7302</spage><epage>7320</epage><pages>7302-7320</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3 glasses in increments of x = 5, with 11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3 tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass of x = 40.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18699</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5427-1269</orcidid><orcidid>https://orcid.org/0000-0003-3434-8059</orcidid><orcidid>https://orcid.org/0000-0002-4197-5520</orcidid><orcidid>https://orcid.org/0000-0001-9417-8827</orcidid><orcidid>https://orcid.org/0000-0002-6647-9865</orcidid><orcidid>https://orcid.org/0000-0003-4667-2374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2022-12, Vol.105 (12), p.7302-7320
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2720236415
source Wiley-Blackwell Read & Publish Collection
subjects Bismuth oxides
Bismuth trioxide
bismuthate
borate
Boron
Boron oxides
Glass transition temperature
Infrared spectroscopy
Lithium borates
Lithium oxides
NMR
NMR spectroscopy
Nuclear magnetic resonance
Raman spectroscopy
Spectrum analysis
Tetrahedra
title The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dual%20role%20of%20bismuth%20in%20Li2O%E2%80%93Bi2O3%E2%80%93B2O3%20glasses%20along%20the%20orthoborate%20join&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Topper,%20Brian&rft.date=2022-12&rft.volume=105&rft.issue=12&rft.spage=7302&rft.epage=7320&rft.pages=7302-7320&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18699&rft_dat=%3Cproquest_wiley%3E2720236415%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2259-b03336bd5157e16a817d8892c56de60651974ff596c0e305c6e80a69e6ba3e013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2720236415&rft_id=info:pmid/&rfr_iscdi=true