Loading…
The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join
The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination...
Saved in:
Published in: | Journal of the American Ceramic Society 2022-12, Vol.105 (12), p.7302-7320 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7320 |
container_issue | 12 |
container_start_page | 7302 |
container_title | Journal of the American Ceramic Society |
container_volume | 105 |
creator | Topper, Brian Tsekrekas, Elizabeth M. Greiner, Lucas Youngman, Randall E. Kamitsos, Efstratios I. Möncke, Doris |
description | The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3 glasses in increments of x = 5, with 11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3 tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass of x = 40. |
doi_str_mv | 10.1111/jace.18699 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2720236415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720236415</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2259-b03336bd5157e16a817d8892c56de60651974ff596c0e305c6e80a69e6ba3e013</originalsourceid><addsrcrecordid>eNotkE1OwzAQRi0EEqWw4QSWWKd47Nqxl6Uqf6pUCZW15SSTNlEalzgRYscduCEnwW2ZzZuRvpmRHiG3wCYQ6752OU5AK2POyAikhIQbUOdkxBjjSao5uyRXIdRxBKOnI_K23iItBtfQzjdIfUmzKuyGfkurli4rvvr9_nmIEAdG0E3jQsBAXePbDe3jtu_6rc9853qkta_aa3JRuibgzT_H5P1xsZ4_J8vV08t8tkz2nEuTZEwIobJCgkwRlNOQFlobnktVoGJKgkmnZSmNyhkKJnOFmjllUGVOIAMxJnenu_vOfwwYelv7oWvjS8tTzrhQU5AxBafUZ9Xgl9131c51XxaYPQizB2H2KMy-zuaLYyf-ACqGX4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720236415</pqid></control><display><type>article</type><title>The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Topper, Brian ; Tsekrekas, Elizabeth M. ; Greiner, Lucas ; Youngman, Randall E. ; Kamitsos, Efstratios I. ; Möncke, Doris</creator><creatorcontrib>Topper, Brian ; Tsekrekas, Elizabeth M. ; Greiner, Lucas ; Youngman, Randall E. ; Kamitsos, Efstratios I. ; Möncke, Doris</creatorcontrib><description>The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3 glasses in increments of x = 5, with 11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3 tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass of x = 40.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18699</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Bismuth oxides ; Bismuth trioxide ; bismuthate ; borate ; Boron ; Boron oxides ; Glass transition temperature ; Infrared spectroscopy ; Lithium borates ; Lithium oxides ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Raman spectroscopy ; Spectrum analysis ; Tetrahedra</subject><ispartof>Journal of the American Ceramic Society, 2022-12, Vol.105 (12), p.7302-7320</ispartof><rights>2022 The American Ceramic Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5427-1269 ; 0000-0003-3434-8059 ; 0000-0002-4197-5520 ; 0000-0001-9417-8827 ; 0000-0002-6647-9865 ; 0000-0003-4667-2374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Topper, Brian</creatorcontrib><creatorcontrib>Tsekrekas, Elizabeth M.</creatorcontrib><creatorcontrib>Greiner, Lucas</creatorcontrib><creatorcontrib>Youngman, Randall E.</creatorcontrib><creatorcontrib>Kamitsos, Efstratios I.</creatorcontrib><creatorcontrib>Möncke, Doris</creatorcontrib><title>The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join</title><title>Journal of the American Ceramic Society</title><description>The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3 glasses in increments of x = 5, with 11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3 tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass of x = 40.</description><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>bismuthate</subject><subject>borate</subject><subject>Boron</subject><subject>Boron oxides</subject><subject>Glass transition temperature</subject><subject>Infrared spectroscopy</subject><subject>Lithium borates</subject><subject>Lithium oxides</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Tetrahedra</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQRi0EEqWw4QSWWKd47Nqxl6Uqf6pUCZW15SSTNlEalzgRYscduCEnwW2ZzZuRvpmRHiG3wCYQ6752OU5AK2POyAikhIQbUOdkxBjjSao5uyRXIdRxBKOnI_K23iItBtfQzjdIfUmzKuyGfkurli4rvvr9_nmIEAdG0E3jQsBAXePbDe3jtu_6rc9853qkta_aa3JRuibgzT_H5P1xsZ4_J8vV08t8tkz2nEuTZEwIobJCgkwRlNOQFlobnktVoGJKgkmnZSmNyhkKJnOFmjllUGVOIAMxJnenu_vOfwwYelv7oWvjS8tTzrhQU5AxBafUZ9Xgl9131c51XxaYPQizB2H2KMy-zuaLYyf-ACqGX4s</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Topper, Brian</creator><creator>Tsekrekas, Elizabeth M.</creator><creator>Greiner, Lucas</creator><creator>Youngman, Randall E.</creator><creator>Kamitsos, Efstratios I.</creator><creator>Möncke, Doris</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5427-1269</orcidid><orcidid>https://orcid.org/0000-0003-3434-8059</orcidid><orcidid>https://orcid.org/0000-0002-4197-5520</orcidid><orcidid>https://orcid.org/0000-0001-9417-8827</orcidid><orcidid>https://orcid.org/0000-0002-6647-9865</orcidid><orcidid>https://orcid.org/0000-0003-4667-2374</orcidid></search><sort><creationdate>202212</creationdate><title>The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join</title><author>Topper, Brian ; Tsekrekas, Elizabeth M. ; Greiner, Lucas ; Youngman, Randall E. ; Kamitsos, Efstratios I. ; Möncke, Doris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2259-b03336bd5157e16a817d8892c56de60651974ff596c0e305c6e80a69e6ba3e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>bismuthate</topic><topic>borate</topic><topic>Boron</topic><topic>Boron oxides</topic><topic>Glass transition temperature</topic><topic>Infrared spectroscopy</topic><topic>Lithium borates</topic><topic>Lithium oxides</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Topper, Brian</creatorcontrib><creatorcontrib>Tsekrekas, Elizabeth M.</creatorcontrib><creatorcontrib>Greiner, Lucas</creatorcontrib><creatorcontrib>Youngman, Randall E.</creatorcontrib><creatorcontrib>Kamitsos, Efstratios I.</creatorcontrib><creatorcontrib>Möncke, Doris</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Topper, Brian</au><au>Tsekrekas, Elizabeth M.</au><au>Greiner, Lucas</au><au>Youngman, Randall E.</au><au>Kamitsos, Efstratios I.</au><au>Möncke, Doris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-12</date><risdate>2022</risdate><volume>105</volume><issue>12</issue><spage>7302</spage><epage>7320</epage><pages>7302-7320</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The structures of glasses in the lithium–bismuth orthoborate composition range deviate significantly from the short‐range order structure of the two crystalline end‐members. Although binary Li3BO3 and BiBO3 are solely of comprised trigonal orthoborate anions, all glasses formed by their combination contain four‐coordinated borate tetrahedra. We analyze the structure of (75−1.5x)Li2O–xBi2O3–(25+0.5x)B2O3 glasses in increments of x = 5, with 11B magic‐angle spinning nuclear magnetic resonance (NMR), infrared (IR), and Raman spectroscopy. For the full series, the oxygen‐to‐boron ratio remains constant at O/B = 3:1. NMR quantifies an increase in the fraction of tetrahedral boron with increasing bismuth oxide content. Evolution of the mid‐IR profile suggests multiple types of tetrahedral boron sites. Raman spectroscopy reveals that Bi2O3 tends to cluster within the lithium borate matrix when initially introduced and that this behavior transforms into a bismuthate network with increasing bismuth oxide content. In all cases, mixed Bi–O–B linkages are observed. The dual role of bismuth as network modifier and network former is likewise observed in the far IR. The glass transition temperature continuously increases with bismuth oxide content; however, the glass stability displays a maximum in the multicomponent glass of x = 40.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18699</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5427-1269</orcidid><orcidid>https://orcid.org/0000-0003-3434-8059</orcidid><orcidid>https://orcid.org/0000-0002-4197-5520</orcidid><orcidid>https://orcid.org/0000-0001-9417-8827</orcidid><orcidid>https://orcid.org/0000-0002-6647-9865</orcidid><orcidid>https://orcid.org/0000-0003-4667-2374</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2022-12, Vol.105 (12), p.7302-7320 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2720236415 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bismuth oxides Bismuth trioxide bismuthate borate Boron Boron oxides Glass transition temperature Infrared spectroscopy Lithium borates Lithium oxides NMR NMR spectroscopy Nuclear magnetic resonance Raman spectroscopy Spectrum analysis Tetrahedra |
title | The dual role of bismuth in Li2O–Bi2O3–B2O3 glasses along the orthoborate join |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dual%20role%20of%20bismuth%20in%20Li2O%E2%80%93Bi2O3%E2%80%93B2O3%20glasses%20along%20the%20orthoborate%20join&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Topper,%20Brian&rft.date=2022-12&rft.volume=105&rft.issue=12&rft.spage=7302&rft.epage=7320&rft.pages=7302-7320&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18699&rft_dat=%3Cproquest_wiley%3E2720236415%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2259-b03336bd5157e16a817d8892c56de60651974ff596c0e305c6e80a69e6ba3e013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2720236415&rft_id=info:pmid/&rfr_iscdi=true |