Loading…

Offloading electromagnetic shower transport to GPUs

Making general particle transport simulation for high-energy physics (HEP) single-instruction-multiple-thread (SIMT) friendly, to take advantage of accelerator hardware, is an important alternative for boosting the throughput of simulation applications. To date, this challenge is not yet resolved, d...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-09
Main Authors: Amadio, G, Apostolakis, J, Buncic, P, Cosmo, G, Dosaru, D, Gheata, A, Hageboeck, S, Hahnfeld, J, Hodgkinson, M, Morgan, B, Novak, M, Petre, A A, Pokorski, W, Ribon, A, Stewart, G A, Vila, P M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Amadio, G
Apostolakis, J
Buncic, P
Cosmo, G
Dosaru, D
Gheata, A
Hageboeck, S
Hahnfeld, J
Hodgkinson, M
Morgan, B
Novak, M
Petre, A A
Pokorski, W
Ribon, A
Stewart, G A
Vila, P M
description Making general particle transport simulation for high-energy physics (HEP) single-instruction-multiple-thread (SIMT) friendly, to take advantage of accelerator hardware, is an important alternative for boosting the throughput of simulation applications. To date, this challenge is not yet resolved, due to difficulties in mapping the complexity of Geant4 components and workflow to the massive parallelism features exposed by graphics processing units (GPU). The AdePT project is one of the R\&D initiatives tackling this limitation and exploring GPUs as potential accelerators for offloading some part of the CPU simulation workload. Our main target is to implement a complete electromagnetic shower demonstrator working on the GPU. The project is the first to create a full prototype of a realistic electron, positron, and gamma electromagnetic shower simulation on GPU, implemented as either a standalone application or as an extension of the standard Geant4 CPU workflow. Our prototype currently provides a platform to explore many optimisations and different approaches. We present the most recent results and initial conclusions of our work, using both a standalone GPU performance analysis and a first implementation of a hybrid workflow based on Geant4 on the CPU and AdePT on the GPU.
doi_str_mv 10.48550/arxiv.2209.15445
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2720665275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720665275</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-e3d81cc1513c7d7b3022389d66c17b1291155651133fb5522fb93f9d241329973</originalsourceid><addsrcrecordid>eNotzcFKAzEQgOEgCJbaB_C24HlrZmYn2RylaBUK9VDPJZtN6pZ1U5NUfXwFPf237xfiBuSyaZnlnU3fw-cSUZolcNPwhZghEdRtg3glFjkfpZSoNDLTTNA2hDHafpgOlR-9Kym-28Pky-Cq_Ba_fKpKslM-xVSqEqv1y2u-FpfBjtkv_jsXu8eH3eqp3mzXz6v7TW0Nc-2pb8E5YCCne92RRKTW9Eo50B2gAWBWDEAUOmbE0BkKpscGCI3RNBe3f-wpxY-zz2V_jOc0_R73qFEqxaiZfgDvoUSn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720665275</pqid></control><display><type>article</type><title>Offloading electromagnetic shower transport to GPUs</title><source>Publicly Available Content (ProQuest)</source><creator>Amadio, G ; Apostolakis, J ; Buncic, P ; Cosmo, G ; Dosaru, D ; Gheata, A ; Hageboeck, S ; Hahnfeld, J ; Hodgkinson, M ; Morgan, B ; Novak, M ; Petre, A A ; Pokorski, W ; Ribon, A ; Stewart, G A ; Vila, P M</creator><creatorcontrib>Amadio, G ; Apostolakis, J ; Buncic, P ; Cosmo, G ; Dosaru, D ; Gheata, A ; Hageboeck, S ; Hahnfeld, J ; Hodgkinson, M ; Morgan, B ; Novak, M ; Petre, A A ; Pokorski, W ; Ribon, A ; Stewart, G A ; Vila, P M</creatorcontrib><description>Making general particle transport simulation for high-energy physics (HEP) single-instruction-multiple-thread (SIMT) friendly, to take advantage of accelerator hardware, is an important alternative for boosting the throughput of simulation applications. To date, this challenge is not yet resolved, due to difficulties in mapping the complexity of Geant4 components and workflow to the massive parallelism features exposed by graphics processing units (GPU). The AdePT project is one of the R\&amp;D initiatives tackling this limitation and exploring GPUs as potential accelerators for offloading some part of the CPU simulation workload. Our main target is to implement a complete electromagnetic shower demonstrator working on the GPU. The project is the first to create a full prototype of a realistic electron, positron, and gamma electromagnetic shower simulation on GPU, implemented as either a standalone application or as an extension of the standard Geant4 CPU workflow. Our prototype currently provides a platform to explore many optimisations and different approaches. We present the most recent results and initial conclusions of our work, using both a standalone GPU performance analysis and a first implementation of a hybrid workflow based on Geant4 on the CPU and AdePT on the GPU.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2209.15445</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Central processing units ; CPUs ; Graphics processing units ; Particle accelerators ; Prototypes ; Simulation ; Workflow</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2720665275?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Amadio, G</creatorcontrib><creatorcontrib>Apostolakis, J</creatorcontrib><creatorcontrib>Buncic, P</creatorcontrib><creatorcontrib>Cosmo, G</creatorcontrib><creatorcontrib>Dosaru, D</creatorcontrib><creatorcontrib>Gheata, A</creatorcontrib><creatorcontrib>Hageboeck, S</creatorcontrib><creatorcontrib>Hahnfeld, J</creatorcontrib><creatorcontrib>Hodgkinson, M</creatorcontrib><creatorcontrib>Morgan, B</creatorcontrib><creatorcontrib>Novak, M</creatorcontrib><creatorcontrib>Petre, A A</creatorcontrib><creatorcontrib>Pokorski, W</creatorcontrib><creatorcontrib>Ribon, A</creatorcontrib><creatorcontrib>Stewart, G A</creatorcontrib><creatorcontrib>Vila, P M</creatorcontrib><title>Offloading electromagnetic shower transport to GPUs</title><title>arXiv.org</title><description>Making general particle transport simulation for high-energy physics (HEP) single-instruction-multiple-thread (SIMT) friendly, to take advantage of accelerator hardware, is an important alternative for boosting the throughput of simulation applications. To date, this challenge is not yet resolved, due to difficulties in mapping the complexity of Geant4 components and workflow to the massive parallelism features exposed by graphics processing units (GPU). The AdePT project is one of the R\&amp;D initiatives tackling this limitation and exploring GPUs as potential accelerators for offloading some part of the CPU simulation workload. Our main target is to implement a complete electromagnetic shower demonstrator working on the GPU. The project is the first to create a full prototype of a realistic electron, positron, and gamma electromagnetic shower simulation on GPU, implemented as either a standalone application or as an extension of the standard Geant4 CPU workflow. Our prototype currently provides a platform to explore many optimisations and different approaches. We present the most recent results and initial conclusions of our work, using both a standalone GPU performance analysis and a first implementation of a hybrid workflow based on Geant4 on the CPU and AdePT on the GPU.</description><subject>Central processing units</subject><subject>CPUs</subject><subject>Graphics processing units</subject><subject>Particle accelerators</subject><subject>Prototypes</subject><subject>Simulation</subject><subject>Workflow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzcFKAzEQgOEgCJbaB_C24HlrZmYn2RylaBUK9VDPJZtN6pZ1U5NUfXwFPf237xfiBuSyaZnlnU3fw-cSUZolcNPwhZghEdRtg3glFjkfpZSoNDLTTNA2hDHafpgOlR-9Kym-28Pky-Cq_Ba_fKpKslM-xVSqEqv1y2u-FpfBjtkv_jsXu8eH3eqp3mzXz6v7TW0Nc-2pb8E5YCCne92RRKTW9Eo50B2gAWBWDEAUOmbE0BkKpscGCI3RNBe3f-wpxY-zz2V_jOc0_R73qFEqxaiZfgDvoUSn</recordid><startdate>20220930</startdate><enddate>20220930</enddate><creator>Amadio, G</creator><creator>Apostolakis, J</creator><creator>Buncic, P</creator><creator>Cosmo, G</creator><creator>Dosaru, D</creator><creator>Gheata, A</creator><creator>Hageboeck, S</creator><creator>Hahnfeld, J</creator><creator>Hodgkinson, M</creator><creator>Morgan, B</creator><creator>Novak, M</creator><creator>Petre, A A</creator><creator>Pokorski, W</creator><creator>Ribon, A</creator><creator>Stewart, G A</creator><creator>Vila, P M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220930</creationdate><title>Offloading electromagnetic shower transport to GPUs</title><author>Amadio, G ; Apostolakis, J ; Buncic, P ; Cosmo, G ; Dosaru, D ; Gheata, A ; Hageboeck, S ; Hahnfeld, J ; Hodgkinson, M ; Morgan, B ; Novak, M ; Petre, A A ; Pokorski, W ; Ribon, A ; Stewart, G A ; Vila, P M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-e3d81cc1513c7d7b3022389d66c17b1291155651133fb5522fb93f9d241329973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Central processing units</topic><topic>CPUs</topic><topic>Graphics processing units</topic><topic>Particle accelerators</topic><topic>Prototypes</topic><topic>Simulation</topic><topic>Workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Amadio, G</creatorcontrib><creatorcontrib>Apostolakis, J</creatorcontrib><creatorcontrib>Buncic, P</creatorcontrib><creatorcontrib>Cosmo, G</creatorcontrib><creatorcontrib>Dosaru, D</creatorcontrib><creatorcontrib>Gheata, A</creatorcontrib><creatorcontrib>Hageboeck, S</creatorcontrib><creatorcontrib>Hahnfeld, J</creatorcontrib><creatorcontrib>Hodgkinson, M</creatorcontrib><creatorcontrib>Morgan, B</creatorcontrib><creatorcontrib>Novak, M</creatorcontrib><creatorcontrib>Petre, A A</creatorcontrib><creatorcontrib>Pokorski, W</creatorcontrib><creatorcontrib>Ribon, A</creatorcontrib><creatorcontrib>Stewart, G A</creatorcontrib><creatorcontrib>Vila, P M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amadio, G</au><au>Apostolakis, J</au><au>Buncic, P</au><au>Cosmo, G</au><au>Dosaru, D</au><au>Gheata, A</au><au>Hageboeck, S</au><au>Hahnfeld, J</au><au>Hodgkinson, M</au><au>Morgan, B</au><au>Novak, M</au><au>Petre, A A</au><au>Pokorski, W</au><au>Ribon, A</au><au>Stewart, G A</au><au>Vila, P M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offloading electromagnetic shower transport to GPUs</atitle><jtitle>arXiv.org</jtitle><date>2022-09-30</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Making general particle transport simulation for high-energy physics (HEP) single-instruction-multiple-thread (SIMT) friendly, to take advantage of accelerator hardware, is an important alternative for boosting the throughput of simulation applications. To date, this challenge is not yet resolved, due to difficulties in mapping the complexity of Geant4 components and workflow to the massive parallelism features exposed by graphics processing units (GPU). The AdePT project is one of the R\&amp;D initiatives tackling this limitation and exploring GPUs as potential accelerators for offloading some part of the CPU simulation workload. Our main target is to implement a complete electromagnetic shower demonstrator working on the GPU. The project is the first to create a full prototype of a realistic electron, positron, and gamma electromagnetic shower simulation on GPU, implemented as either a standalone application or as an extension of the standard Geant4 CPU workflow. Our prototype currently provides a platform to explore many optimisations and different approaches. We present the most recent results and initial conclusions of our work, using both a standalone GPU performance analysis and a first implementation of a hybrid workflow based on Geant4 on the CPU and AdePT on the GPU.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2209.15445</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2720665275
source Publicly Available Content (ProQuest)
subjects Central processing units
CPUs
Graphics processing units
Particle accelerators
Prototypes
Simulation
Workflow
title Offloading electromagnetic shower transport to GPUs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offloading%20electromagnetic%20shower%20transport%20to%20GPUs&rft.jtitle=arXiv.org&rft.au=Amadio,%20G&rft.date=2022-09-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2209.15445&rft_dat=%3Cproquest%3E2720665275%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-e3d81cc1513c7d7b3022389d66c17b1291155651133fb5522fb93f9d241329973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2720665275&rft_id=info:pmid/&rfr_iscdi=true