Loading…
INT: Towards Infinite-frames 3D Detection with An Efficient Framework
It is natural to construct a multi-frame instead of a single-frame 3D detector for a continuous-time stream. Although increasing the number of frames might improve performance, previous multi-frame studies only used very limited frames to build their systems due to the dramatically increased computa...
Saved in:
Published in: | arXiv.org 2023-02 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Jianyun Miao, Zhenwei Zhang, Da Pan, Hongyu Liu, Kaixuan Peihan Hao Zhu, Jun Sun, Zhengyang Li, Hongmin Zhan, Xin |
description | It is natural to construct a multi-frame instead of a single-frame 3D detector for a continuous-time stream. Although increasing the number of frames might improve performance, previous multi-frame studies only used very limited frames to build their systems due to the dramatically increased computational and memory cost. To address these issues, we propose a novel on-stream training and prediction framework that, in theory, can employ an infinite number of frames while keeping the same amount of computation as a single-frame detector. This infinite framework (INT), which can be used with most existing detectors, is utilized, for example, on the popular CenterPoint, with significant latency reductions and performance improvements. We've also conducted extensive experiments on two large-scale datasets, nuScenes and Waymo Open Dataset, to demonstrate the scheme's effectiveness and efficiency. By employing INT on CenterPoint, we can get around 7% (Waymo) and 15% (nuScenes) performance boost with only 2~4ms latency overhead, and currently SOTA on the Waymo 3D Detection leaderboard. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2720666831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720666831</sourcerecordid><originalsourceid>FETCH-proquest_journals_27206668313</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oLMxvOaVbpJKXTt5F7BvNaqtt4t-voB_Q6T28z4JFKESaFDvEFYu9HznnKHPMMhGxqjm3e2jt3LuLh8YobXSgRLn-QR5ECSUFGoK2BmYdrnAwUCmlB00mQP1Vs3W3DVuq_u4p_nXNtnXVHk_J09nXRD50o52c-awOc-RSykKk4j_1Btg6OcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720666831</pqid></control><display><type>article</type><title>INT: Towards Infinite-frames 3D Detection with An Efficient Framework</title><source>Publicly Available Content (ProQuest)</source><creator>Xu, Jianyun ; Miao, Zhenwei ; Zhang, Da ; Pan, Hongyu ; Liu, Kaixuan ; Peihan Hao ; Zhu, Jun ; Sun, Zhengyang ; Li, Hongmin ; Zhan, Xin</creator><creatorcontrib>Xu, Jianyun ; Miao, Zhenwei ; Zhang, Da ; Pan, Hongyu ; Liu, Kaixuan ; Peihan Hao ; Zhu, Jun ; Sun, Zhengyang ; Li, Hongmin ; Zhan, Xin</creatorcontrib><description>It is natural to construct a multi-frame instead of a single-frame 3D detector for a continuous-time stream. Although increasing the number of frames might improve performance, previous multi-frame studies only used very limited frames to build their systems due to the dramatically increased computational and memory cost. To address these issues, we propose a novel on-stream training and prediction framework that, in theory, can employ an infinite number of frames while keeping the same amount of computation as a single-frame detector. This infinite framework (INT), which can be used with most existing detectors, is utilized, for example, on the popular CenterPoint, with significant latency reductions and performance improvements. We've also conducted extensive experiments on two large-scale datasets, nuScenes and Waymo Open Dataset, to demonstrate the scheme's effectiveness and efficiency. By employing INT on CenterPoint, we can get around 7% (Waymo) and 15% (nuScenes) performance boost with only 2~4ms latency overhead, and currently SOTA on the Waymo 3D Detection leaderboard.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Frames ; Performance enhancement</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2720666831?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Xu, Jianyun</creatorcontrib><creatorcontrib>Miao, Zhenwei</creatorcontrib><creatorcontrib>Zhang, Da</creatorcontrib><creatorcontrib>Pan, Hongyu</creatorcontrib><creatorcontrib>Liu, Kaixuan</creatorcontrib><creatorcontrib>Peihan Hao</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Sun, Zhengyang</creatorcontrib><creatorcontrib>Li, Hongmin</creatorcontrib><creatorcontrib>Zhan, Xin</creatorcontrib><title>INT: Towards Infinite-frames 3D Detection with An Efficient Framework</title><title>arXiv.org</title><description>It is natural to construct a multi-frame instead of a single-frame 3D detector for a continuous-time stream. Although increasing the number of frames might improve performance, previous multi-frame studies only used very limited frames to build their systems due to the dramatically increased computational and memory cost. To address these issues, we propose a novel on-stream training and prediction framework that, in theory, can employ an infinite number of frames while keeping the same amount of computation as a single-frame detector. This infinite framework (INT), which can be used with most existing detectors, is utilized, for example, on the popular CenterPoint, with significant latency reductions and performance improvements. We've also conducted extensive experiments on two large-scale datasets, nuScenes and Waymo Open Dataset, to demonstrate the scheme's effectiveness and efficiency. By employing INT on CenterPoint, we can get around 7% (Waymo) and 15% (nuScenes) performance boost with only 2~4ms latency overhead, and currently SOTA on the Waymo 3D Detection leaderboard.</description><subject>Datasets</subject><subject>Frames</subject><subject>Performance enhancement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oLMxvOaVbpJKXTt5F7BvNaqtt4t-voB_Q6T28z4JFKESaFDvEFYu9HznnKHPMMhGxqjm3e2jt3LuLh8YobXSgRLn-QR5ECSUFGoK2BmYdrnAwUCmlB00mQP1Vs3W3DVuq_u4p_nXNtnXVHk_J09nXRD50o52c-awOc-RSykKk4j_1Btg6OcI</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Xu, Jianyun</creator><creator>Miao, Zhenwei</creator><creator>Zhang, Da</creator><creator>Pan, Hongyu</creator><creator>Liu, Kaixuan</creator><creator>Peihan Hao</creator><creator>Zhu, Jun</creator><creator>Sun, Zhengyang</creator><creator>Li, Hongmin</creator><creator>Zhan, Xin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230213</creationdate><title>INT: Towards Infinite-frames 3D Detection with An Efficient Framework</title><author>Xu, Jianyun ; Miao, Zhenwei ; Zhang, Da ; Pan, Hongyu ; Liu, Kaixuan ; Peihan Hao ; Zhu, Jun ; Sun, Zhengyang ; Li, Hongmin ; Zhan, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27206668313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Frames</topic><topic>Performance enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jianyun</creatorcontrib><creatorcontrib>Miao, Zhenwei</creatorcontrib><creatorcontrib>Zhang, Da</creatorcontrib><creatorcontrib>Pan, Hongyu</creatorcontrib><creatorcontrib>Liu, Kaixuan</creatorcontrib><creatorcontrib>Peihan Hao</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Sun, Zhengyang</creatorcontrib><creatorcontrib>Li, Hongmin</creatorcontrib><creatorcontrib>Zhan, Xin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jianyun</au><au>Miao, Zhenwei</au><au>Zhang, Da</au><au>Pan, Hongyu</au><au>Liu, Kaixuan</au><au>Peihan Hao</au><au>Zhu, Jun</au><au>Sun, Zhengyang</au><au>Li, Hongmin</au><au>Zhan, Xin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>INT: Towards Infinite-frames 3D Detection with An Efficient Framework</atitle><jtitle>arXiv.org</jtitle><date>2023-02-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>It is natural to construct a multi-frame instead of a single-frame 3D detector for a continuous-time stream. Although increasing the number of frames might improve performance, previous multi-frame studies only used very limited frames to build their systems due to the dramatically increased computational and memory cost. To address these issues, we propose a novel on-stream training and prediction framework that, in theory, can employ an infinite number of frames while keeping the same amount of computation as a single-frame detector. This infinite framework (INT), which can be used with most existing detectors, is utilized, for example, on the popular CenterPoint, with significant latency reductions and performance improvements. We've also conducted extensive experiments on two large-scale datasets, nuScenes and Waymo Open Dataset, to demonstrate the scheme's effectiveness and efficiency. By employing INT on CenterPoint, we can get around 7% (Waymo) and 15% (nuScenes) performance boost with only 2~4ms latency overhead, and currently SOTA on the Waymo 3D Detection leaderboard.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2720666831 |
source | Publicly Available Content (ProQuest) |
subjects | Datasets Frames Performance enhancement |
title | INT: Towards Infinite-frames 3D Detection with An Efficient Framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=INT:%20Towards%20Infinite-frames%203D%20Detection%20with%20An%20Efficient%20Framework&rft.jtitle=arXiv.org&rft.au=Xu,%20Jianyun&rft.date=2023-02-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2720666831%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27206668313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2720666831&rft_id=info:pmid/&rfr_iscdi=true |