Loading…

Mechanically tunable metasurface with large gamut of color: Lateral hybrid system

Hybrid metasurfaces are made of metals and dielectrics in which dielectrics (metals) are sandwiched between metals (dielectrics) to control the reflection and transmission of light. The existing designs have low sensitivity, little color coverage, and a lack of flexibility. Here, a new structural co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2022-10, Vol.132 (13)
Main Authors: Fang, Rui, Ghasemi, Amir, Zeze, Dagou A., Keshavarz Hedayati, Mehdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybrid metasurfaces are made of metals and dielectrics in which dielectrics (metals) are sandwiched between metals (dielectrics) to control the reflection and transmission of light. The existing designs have low sensitivity, little color coverage, and a lack of flexibility. Here, a new structural color design is proposed in which metals and dielectric resonators are arranged spatially in 2D to form a lateral hybrid system, instead of being placed as layers. Such a design exhibits a high level of sensitivity to mechanical forces because it works via 2D optical coupling and light confinement between adjacent resonators. Our study shows that in-planar coupling of two dissimilar resonators can enhance sensitivity by an order of magnitude in comparison to stacking them. Metasurfaces with our design would have unprecedented mechanical tunability without compromising either the materials choice or processing. Using the proposed hybrid system, we demonstrate large tunability across the full range of colors with only a 10% change in the size of the lattice, which further proves its superiority over existing designs. This concept could find application in wearable devices that require high sensitivity to small mechanical fluctuations.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0115964