Loading…
Ordinary representation and cohomology
We can associate \(p\) -adic admissible unitary representation of \(\GL_2(\Q_p)\) to every local Galois representation. We prove if local Galois representations is ordinary then there exists a sub representation of this representation of \(\GL_2(\Q_p)\) that appears in ordinary parts of the cohomolo...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Banerjee, Debargha |
description | We can associate \(p\) -adic admissible unitary representation of \(\GL_2(\Q_p)\) to every local Galois representation. We prove if local Galois representations is ordinary then there exists a sub representation of this representation of \(\GL_2(\Q_p)\) that appears in ordinary parts of the cohomology. We give a positive answer to a question raised by Chojecki \cite{Chojecki18}. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2722012120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722012120</sourcerecordid><originalsourceid>FETCH-proquest_journals_27220121203</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8y9KycxLLKpUKEotKEotTs0rSSzJzM9TSMxLUUjOz8jPzc_JT6_kYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MjIwNDI0MjA2PiVAEAgGcv3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722012120</pqid></control><display><type>article</type><title>Ordinary representation and cohomology</title><source>ProQuest - Publicly Available Content Database</source><creator>Banerjee, Debargha</creator><creatorcontrib>Banerjee, Debargha</creatorcontrib><description>We can associate \(p\) -adic admissible unitary representation of \(\GL_2(\Q_p)\) to every local Galois representation. We prove if local Galois representations is ordinary then there exists a sub representation of this representation of \(\GL_2(\Q_p)\) that appears in ordinary parts of the cohomology. We give a positive answer to a question raised by Chojecki \cite{Chojecki18}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Representations</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2722012120?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Banerjee, Debargha</creatorcontrib><title>Ordinary representation and cohomology</title><title>arXiv.org</title><description>We can associate \(p\) -adic admissible unitary representation of \(\GL_2(\Q_p)\) to every local Galois representation. We prove if local Galois representations is ordinary then there exists a sub representation of this representation of \(\GL_2(\Q_p)\) that appears in ordinary parts of the cohomology. We give a positive answer to a question raised by Chojecki \cite{Chojecki18}.</description><subject>Homology</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8y9KycxLLKpUKEotKEotTs0rSSzJzM9TSMxLUUjOz8jPzc_JT6_kYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MjIwNDI0MjA2PiVAEAgGcv3w</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Banerjee, Debargha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221108</creationdate><title>Ordinary representation and cohomology</title><author>Banerjee, Debargha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27220121203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Homology</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Debargha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Debargha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ordinary representation and cohomology</atitle><jtitle>arXiv.org</jtitle><date>2022-11-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We can associate \(p\) -adic admissible unitary representation of \(\GL_2(\Q_p)\) to every local Galois representation. We prove if local Galois representations is ordinary then there exists a sub representation of this representation of \(\GL_2(\Q_p)\) that appears in ordinary parts of the cohomology. We give a positive answer to a question raised by Chojecki \cite{Chojecki18}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2722012120 |
source | ProQuest - Publicly Available Content Database |
subjects | Homology Representations |
title | Ordinary representation and cohomology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ordinary%20representation%20and%20cohomology&rft.jtitle=arXiv.org&rft.au=Banerjee,%20Debargha&rft.date=2022-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2722012120%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27220121203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2722012120&rft_id=info:pmid/&rfr_iscdi=true |