Loading…

A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction

Exploring highly efficient heterostructured photocatalysts for converting CO2 to value-added chemicals has long been pursued, which is mainly limited by inefficient visible/near-infrared (NIR) photon capture, undesirable electron–hole recombination, and insufficient accessible active sites. Herein,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-10, Vol.10 (39), p.20934-20945
Main Authors: Yamin Xi, Mo, Weihao, Fan, Zhixin, Hu, Lingxuan, Chen, Wenbin, Zhang, Yan, Wang, Peng, Zhong, Shuxian, Zhao, Yuling, Bai, Song
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 20945
container_issue 39
container_start_page 20934
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 10
creator Yamin Xi
Mo, Weihao
Fan, Zhixin
Hu, Lingxuan
Chen, Wenbin
Zhang, Yan
Wang, Peng
Zhong, Shuxian
Zhao, Yuling
Bai, Song
description Exploring highly efficient heterostructured photocatalysts for converting CO2 to value-added chemicals has long been pursued, which is mainly limited by inefficient visible/near-infrared (NIR) photon capture, undesirable electron–hole recombination, and insufficient accessible active sites. Herein, we report a robust heterojunction photocatalyst, consisting of mesh-like Bi2S3 nanoarrays epitaxially grown on BiOBr nanoplates via a facet-selective topotactic transformation process, for synchronically overcoming the aforementioned obstacles and markedly advancing the CO2 conversion efficiency: (i) vertically aligned Bi2S3 nanowalls harness solar photons from the visible to NIR region beyond 1000 nm and minimize the light shielding effect on BiOBr substrates, while multiple light reflection in the mesh pores enclosed by Bi2S3 walls and BiOBr supports accounts for improved light utilization efficiency; (ii) intimate coupling of BiOBr and Bi2S3 endows the heterojunction with enhanced charge separation efficiency through the interfacial Bi–S/Br–Bi bonds between them; (iii) etched pores and oxygen vacancies on the surface of BiOBr strengthen the adsorption and activation of CO2, and decrease the barrier of the rate-determining step in CO2-to-CO reduction. By virtue of these distinguished features, the optimized BiOBr/Bi2S3 heterojunction delivers an outstanding CO evolution rate of 103.5 μmol gcat−1 h−1 and selectivity of 90.1% under broadband light irradiation. This work sets up a significant milestone in simultaneously manipulating the three critical steps in photocatalysis during the construction of novel hybrid architectures for solar energy conversion applications.
doi_str_mv 10.1039/d2ta04278a
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2723511720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723511720</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-1ed7126e1632598e2da50fc1a55469b3a93c00580debf01cde5db2ca475353943</originalsourceid><addsrcrecordid>eNo9TUtPwzAYixBITGMXfkEkzmV5NG1z3CZe0qQdgPP0NflKM0ZS0hTYhd9OeQhfbNmWTcg5Z5ecST23IgHLRVnBEZkIplhW5ro4_tdVdUpmfb9jIyrGCq0n5HNBX7Bvs717Rrp0m2WcL524l9SDDxAjHGiLCWPYDd4kFzx9d6mlrcMI0bTOwJ52IWJPwVsaPg5P6OkbGPDGjWYTIq1jAFt_x6uNoF0b0ti3w8_aGTlpYN_j7I-n5PH66mF1m603N3erxTrreCVTxtGWXBTICymUrlBYUKwxHJTKC11L0NIwpipmsW4YNxaVrYWBvFRSSZ3LKbn43e1ieB2wT9tdGKIfL7eiFFJxXgomvwCczmGJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723511720</pqid></control><display><type>article</type><title>A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Yamin Xi ; Mo, Weihao ; Fan, Zhixin ; Hu, Lingxuan ; Chen, Wenbin ; Zhang, Yan ; Wang, Peng ; Zhong, Shuxian ; Zhao, Yuling ; Bai, Song</creator><creatorcontrib>Yamin Xi ; Mo, Weihao ; Fan, Zhixin ; Hu, Lingxuan ; Chen, Wenbin ; Zhang, Yan ; Wang, Peng ; Zhong, Shuxian ; Zhao, Yuling ; Bai, Song</creatorcontrib><description>Exploring highly efficient heterostructured photocatalysts for converting CO2 to value-added chemicals has long been pursued, which is mainly limited by inefficient visible/near-infrared (NIR) photon capture, undesirable electron–hole recombination, and insufficient accessible active sites. Herein, we report a robust heterojunction photocatalyst, consisting of mesh-like Bi2S3 nanoarrays epitaxially grown on BiOBr nanoplates via a facet-selective topotactic transformation process, for synchronically overcoming the aforementioned obstacles and markedly advancing the CO2 conversion efficiency: (i) vertically aligned Bi2S3 nanowalls harness solar photons from the visible to NIR region beyond 1000 nm and minimize the light shielding effect on BiOBr substrates, while multiple light reflection in the mesh pores enclosed by Bi2S3 walls and BiOBr supports accounts for improved light utilization efficiency; (ii) intimate coupling of BiOBr and Bi2S3 endows the heterojunction with enhanced charge separation efficiency through the interfacial Bi–S/Br–Bi bonds between them; (iii) etched pores and oxygen vacancies on the surface of BiOBr strengthen the adsorption and activation of CO2, and decrease the barrier of the rate-determining step in CO2-to-CO reduction. By virtue of these distinguished features, the optimized BiOBr/Bi2S3 heterojunction delivers an outstanding CO evolution rate of 103.5 μmol gcat−1 h−1 and selectivity of 90.1% under broadband light irradiation. This work sets up a significant milestone in simultaneously manipulating the three critical steps in photocatalysis during the construction of novel hybrid architectures for solar energy conversion applications.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta04278a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bismuth sulfides ; Broadband ; Carbon dioxide ; Charge efficiency ; Efficiency ; Energy conversion ; Epitaxial growth ; Heterojunctions ; Irradiation ; Light irradiation ; Light reflection ; Near infrared radiation ; Oxygen ; Photocatalysis ; Photocatalysts ; Photons ; Photoreduction ; Pores ; Radiation ; Recombination ; Selectivity ; Solar energy ; Solar energy conversion ; Substrates</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.10 (39), p.20934-20945</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yamin Xi</creatorcontrib><creatorcontrib>Mo, Weihao</creatorcontrib><creatorcontrib>Fan, Zhixin</creatorcontrib><creatorcontrib>Hu, Lingxuan</creatorcontrib><creatorcontrib>Chen, Wenbin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhong, Shuxian</creatorcontrib><creatorcontrib>Zhao, Yuling</creatorcontrib><creatorcontrib>Bai, Song</creatorcontrib><title>A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Exploring highly efficient heterostructured photocatalysts for converting CO2 to value-added chemicals has long been pursued, which is mainly limited by inefficient visible/near-infrared (NIR) photon capture, undesirable electron–hole recombination, and insufficient accessible active sites. Herein, we report a robust heterojunction photocatalyst, consisting of mesh-like Bi2S3 nanoarrays epitaxially grown on BiOBr nanoplates via a facet-selective topotactic transformation process, for synchronically overcoming the aforementioned obstacles and markedly advancing the CO2 conversion efficiency: (i) vertically aligned Bi2S3 nanowalls harness solar photons from the visible to NIR region beyond 1000 nm and minimize the light shielding effect on BiOBr substrates, while multiple light reflection in the mesh pores enclosed by Bi2S3 walls and BiOBr supports accounts for improved light utilization efficiency; (ii) intimate coupling of BiOBr and Bi2S3 endows the heterojunction with enhanced charge separation efficiency through the interfacial Bi–S/Br–Bi bonds between them; (iii) etched pores and oxygen vacancies on the surface of BiOBr strengthen the adsorption and activation of CO2, and decrease the barrier of the rate-determining step in CO2-to-CO reduction. By virtue of these distinguished features, the optimized BiOBr/Bi2S3 heterojunction delivers an outstanding CO evolution rate of 103.5 μmol gcat−1 h−1 and selectivity of 90.1% under broadband light irradiation. This work sets up a significant milestone in simultaneously manipulating the three critical steps in photocatalysis during the construction of novel hybrid architectures for solar energy conversion applications.</description><subject>Bismuth sulfides</subject><subject>Broadband</subject><subject>Carbon dioxide</subject><subject>Charge efficiency</subject><subject>Efficiency</subject><subject>Energy conversion</subject><subject>Epitaxial growth</subject><subject>Heterojunctions</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Light reflection</subject><subject>Near infrared radiation</subject><subject>Oxygen</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photons</subject><subject>Photoreduction</subject><subject>Pores</subject><subject>Radiation</subject><subject>Recombination</subject><subject>Selectivity</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Substrates</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9TUtPwzAYixBITGMXfkEkzmV5NG1z3CZe0qQdgPP0NflKM0ZS0hTYhd9OeQhfbNmWTcg5Z5ecST23IgHLRVnBEZkIplhW5ro4_tdVdUpmfb9jIyrGCq0n5HNBX7Bvs717Rrp0m2WcL524l9SDDxAjHGiLCWPYDd4kFzx9d6mlrcMI0bTOwJ52IWJPwVsaPg5P6OkbGPDGjWYTIq1jAFt_x6uNoF0b0ti3w8_aGTlpYN_j7I-n5PH66mF1m603N3erxTrreCVTxtGWXBTICymUrlBYUKwxHJTKC11L0NIwpipmsW4YNxaVrYWBvFRSSZ3LKbn43e1ieB2wT9tdGKIfL7eiFFJxXgomvwCczmGJ</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Yamin Xi</creator><creator>Mo, Weihao</creator><creator>Fan, Zhixin</creator><creator>Hu, Lingxuan</creator><creator>Chen, Wenbin</creator><creator>Zhang, Yan</creator><creator>Wang, Peng</creator><creator>Zhong, Shuxian</creator><creator>Zhao, Yuling</creator><creator>Bai, Song</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20221011</creationdate><title>A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction</title><author>Yamin Xi ; Mo, Weihao ; Fan, Zhixin ; Hu, Lingxuan ; Chen, Wenbin ; Zhang, Yan ; Wang, Peng ; Zhong, Shuxian ; Zhao, Yuling ; Bai, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-1ed7126e1632598e2da50fc1a55469b3a93c00580debf01cde5db2ca475353943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bismuth sulfides</topic><topic>Broadband</topic><topic>Carbon dioxide</topic><topic>Charge efficiency</topic><topic>Efficiency</topic><topic>Energy conversion</topic><topic>Epitaxial growth</topic><topic>Heterojunctions</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Light reflection</topic><topic>Near infrared radiation</topic><topic>Oxygen</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photons</topic><topic>Photoreduction</topic><topic>Pores</topic><topic>Radiation</topic><topic>Recombination</topic><topic>Selectivity</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamin Xi</creatorcontrib><creatorcontrib>Mo, Weihao</creatorcontrib><creatorcontrib>Fan, Zhixin</creatorcontrib><creatorcontrib>Hu, Lingxuan</creatorcontrib><creatorcontrib>Chen, Wenbin</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhong, Shuxian</creatorcontrib><creatorcontrib>Zhao, Yuling</creatorcontrib><creatorcontrib>Bai, Song</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamin Xi</au><au>Mo, Weihao</au><au>Fan, Zhixin</au><au>Hu, Lingxuan</au><au>Chen, Wenbin</au><au>Zhang, Yan</au><au>Wang, Peng</au><au>Zhong, Shuxian</au><au>Zhao, Yuling</au><au>Bai, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-10-11</date><risdate>2022</risdate><volume>10</volume><issue>39</issue><spage>20934</spage><epage>20945</epage><pages>20934-20945</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Exploring highly efficient heterostructured photocatalysts for converting CO2 to value-added chemicals has long been pursued, which is mainly limited by inefficient visible/near-infrared (NIR) photon capture, undesirable electron–hole recombination, and insufficient accessible active sites. Herein, we report a robust heterojunction photocatalyst, consisting of mesh-like Bi2S3 nanoarrays epitaxially grown on BiOBr nanoplates via a facet-selective topotactic transformation process, for synchronically overcoming the aforementioned obstacles and markedly advancing the CO2 conversion efficiency: (i) vertically aligned Bi2S3 nanowalls harness solar photons from the visible to NIR region beyond 1000 nm and minimize the light shielding effect on BiOBr substrates, while multiple light reflection in the mesh pores enclosed by Bi2S3 walls and BiOBr supports accounts for improved light utilization efficiency; (ii) intimate coupling of BiOBr and Bi2S3 endows the heterojunction with enhanced charge separation efficiency through the interfacial Bi–S/Br–Bi bonds between them; (iii) etched pores and oxygen vacancies on the surface of BiOBr strengthen the adsorption and activation of CO2, and decrease the barrier of the rate-determining step in CO2-to-CO reduction. By virtue of these distinguished features, the optimized BiOBr/Bi2S3 heterojunction delivers an outstanding CO evolution rate of 103.5 μmol gcat−1 h−1 and selectivity of 90.1% under broadband light irradiation. This work sets up a significant milestone in simultaneously manipulating the three critical steps in photocatalysis during the construction of novel hybrid architectures for solar energy conversion applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta04278a</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-10, Vol.10 (39), p.20934-20945
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2723511720
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Bismuth sulfides
Broadband
Carbon dioxide
Charge efficiency
Efficiency
Energy conversion
Epitaxial growth
Heterojunctions
Irradiation
Light irradiation
Light reflection
Near infrared radiation
Oxygen
Photocatalysis
Photocatalysts
Photons
Photoreduction
Pores
Radiation
Recombination
Selectivity
Solar energy
Solar energy conversion
Substrates
title A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoreduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mesh-like%20BiOBr/Bi2S3%20nanoarray%20heterojunction%20with%20hierarchical%20pores%20and%20oxygen%20vacancies%20for%20broadband%20CO2%20photoreduction&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Yamin%20Xi&rft.date=2022-10-11&rft.volume=10&rft.issue=39&rft.spage=20934&rft.epage=20945&rft.pages=20934-20945&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta04278a&rft_dat=%3Cproquest%3E2723511720%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-1ed7126e1632598e2da50fc1a55469b3a93c00580debf01cde5db2ca475353943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723511720&rft_id=info:pmid/&rfr_iscdi=true