Loading…
Do you pay for Privacy in Online learning?
Online learning, in the mistake bound model, is one of the most fundamental concepts in learning theory. Differential privacy, instead, is the most widely used statistical concept of privacy in the machine learning community. It is thus clear that defining learning problems that are online different...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sanyal, Amartya Ramponi, Giorgia |
description | Online learning, in the mistake bound model, is one of the most fundamental concepts in learning theory. Differential privacy, instead, is the most widely used statistical concept of privacy in the machine learning community. It is thus clear that defining learning problems that are online differentially privately learnable is of great interest. In this paper, we pose the question on if the two problems are equivalent from a learning perspective, i.e., is privacy for free in the online learning framework? |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2723659206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723659206</sourcerecordid><originalsourceid>FETCH-proquest_journals_27236592063</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcslXqMwvVShIrFRIyy9SCCjKLEtMrlTIzFPwz8vJzEtVyElNLMrLzEu352FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzI2MzU0sjAzNj4lQBAMKYMC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723659206</pqid></control><display><type>article</type><title>Do you pay for Privacy in Online learning?</title><source>Publicly Available Content Database</source><creator>Sanyal, Amartya ; Ramponi, Giorgia</creator><creatorcontrib>Sanyal, Amartya ; Ramponi, Giorgia</creatorcontrib><description>Online learning, in the mistake bound model, is one of the most fundamental concepts in learning theory. Differential privacy, instead, is the most widely used statistical concept of privacy in the machine learning community. It is thus clear that defining learning problems that are online differentially privately learnable is of great interest. In this paper, we pose the question on if the two problems are equivalent from a learning perspective, i.e., is privacy for free in the online learning framework?</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Learning theory ; Machine learning ; Privacy</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2723659206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Sanyal, Amartya</creatorcontrib><creatorcontrib>Ramponi, Giorgia</creatorcontrib><title>Do you pay for Privacy in Online learning?</title><title>arXiv.org</title><description>Online learning, in the mistake bound model, is one of the most fundamental concepts in learning theory. Differential privacy, instead, is the most widely used statistical concept of privacy in the machine learning community. It is thus clear that defining learning problems that are online differentially privately learnable is of great interest. In this paper, we pose the question on if the two problems are equivalent from a learning perspective, i.e., is privacy for free in the online learning framework?</description><subject>Learning theory</subject><subject>Machine learning</subject><subject>Privacy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcslXqMwvVShIrFRIyy9SCCjKLEtMrlTIzFPwz8vJzEtVyElNLMrLzEu352FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzI2MzU0sjAzNj4lQBAMKYMC0</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Sanyal, Amartya</creator><creator>Ramponi, Giorgia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221010</creationdate><title>Do you pay for Privacy in Online learning?</title><author>Sanyal, Amartya ; Ramponi, Giorgia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27236592063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Learning theory</topic><topic>Machine learning</topic><topic>Privacy</topic><toplevel>online_resources</toplevel><creatorcontrib>Sanyal, Amartya</creatorcontrib><creatorcontrib>Ramponi, Giorgia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanyal, Amartya</au><au>Ramponi, Giorgia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Do you pay for Privacy in Online learning?</atitle><jtitle>arXiv.org</jtitle><date>2022-10-10</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Online learning, in the mistake bound model, is one of the most fundamental concepts in learning theory. Differential privacy, instead, is the most widely used statistical concept of privacy in the machine learning community. It is thus clear that defining learning problems that are online differentially privately learnable is of great interest. In this paper, we pose the question on if the two problems are equivalent from a learning perspective, i.e., is privacy for free in the online learning framework?</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2723659206 |
source | Publicly Available Content Database |
subjects | Learning theory Machine learning Privacy |
title | Do you pay for Privacy in Online learning? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Do%20you%20pay%20for%20Privacy%20in%20Online%20learning?&rft.jtitle=arXiv.org&rft.au=Sanyal,%20Amartya&rft.date=2022-10-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2723659206%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27236592063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723659206&rft_id=info:pmid/&rfr_iscdi=true |