Loading…

Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels

mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave ban...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2022-10, Vol.21 (10), p.8803-8816
Main Authors: Chafaa, Irched, Negrel, Romain, Belmega, E. Veronica, Debbah, Merouane
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93
cites cdi_FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93
container_end_page 8816
container_issue 10
container_start_page 8803
container_title IEEE transactions on wireless communications
container_volume 21
creator Chafaa, Irched
Negrel, Romain
Belmega, E. Veronica
Debbah, Merouane
description mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave band for a single access point- user link. This complex channel-beam mapping is learned via data issued from the DeepMIMO dataset. We then compare our proposed method with existing supervised deep learning and classic reinforcement learning methods. Our simulations show that choosing an appropriate beam steering method depends on the target application and is a tradeoff between data rate and computational complexity. We also investigate tuning the size of our neural network depending on the number of transmit and receive antennas at the access point. Finally, we extend our method to the case of multiple links and introduce a federated learning (FL) approach to efficiently predict their mmWave beams by sharing only the weights of the locally trained neural networks (and not the local data). We investigate both synchronous and asynchronous FL methods. Our numerical simulations show the high potential of our approach, especially when the local available data is scarce or imperfect.
doi_str_mv 10.1109/TWC.2022.3170104
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2723899888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9769897</ieee_id><sourcerecordid>2723899888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxoMoWKt3wUvAk4fUfTT7ONZaWyHgIYEel00ya1Pycjcp6l9vQqSn-Zj5fTPD53n3GC0wRvI52a8XBBGyoJgjjJYX3gyHoQgIWYrLUVMWYMLZtXfj3BEhzFkYzrwkhtIEcd-CPRUOcv8VoPUj0LYu6k_fNNavqr0-gf8CuvLjDsCOg813WzZFN8q4TwPmb3e__vqg6xpKd-tdGV06uPuvcy952yTrXRB9bN_XqyjIKONdYEzOJE4N6GVKQ5rzPCQ55UwTKjJBtIBUMJqnLJcZYRnKjMHCmCzXHDMt6dx7mtYedKlaW1Ta_qhGF2q3itTYQzRkHBN0wgP7OLGtbb56cJ06Nr2th-8U4cM9KYUQA4UmKrONcxbMeS1GaoxZDTGrMWb1H_NgeZgsBQCcccmZFJLTPxl6d88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723899888</pqid></control><display><type>article</type><title>Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chafaa, Irched ; Negrel, Romain ; Belmega, E. Veronica ; Debbah, Merouane</creator><creatorcontrib>Chafaa, Irched ; Negrel, Romain ; Belmega, E. Veronica ; Debbah, Merouane</creatorcontrib><description>mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave band for a single access point- user link. This complex channel-beam mapping is learned via data issued from the DeepMIMO dataset. We then compare our proposed method with existing supervised deep learning and classic reinforcement learning methods. Our simulations show that choosing an appropriate beam steering method depends on the target application and is a tradeoff between data rate and computational complexity. We also investigate tuning the size of our neural network depending on the number of transmit and receive antennas at the access point. Finally, we extend our method to the case of multiple links and introduce a federated learning (FL) approach to efficiently predict their mmWave beams by sharing only the weights of the locally trained neural networks (and not the local data). We investigate both synchronous and asynchronous FL methods. Our numerical simulations show the high potential of our approach, especially when the local available data is scarce or imperfect.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3170104</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Array signal processing ; Beam steering ; Beamforming ; Channels ; Complexity ; Computer simulation ; Continuous beams ; Deep learning ; deep neural networks ; Downlink ; Engineering Sciences ; federated learning ; Millimeter waves ; mmWave beamforming ; Neural networks ; Numerical methods ; self-supervised learning ; Training ; Uplink ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-10, Vol.21 (10), p.8803-8816</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93</citedby><cites>FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93</cites><orcidid>0000-0003-4336-4704 ; 0000-0003-1467-5933 ; 0000-0002-4195-5191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9769897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03567120$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chafaa, Irched</creatorcontrib><creatorcontrib>Negrel, Romain</creatorcontrib><creatorcontrib>Belmega, E. Veronica</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><title>Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave band for a single access point- user link. This complex channel-beam mapping is learned via data issued from the DeepMIMO dataset. We then compare our proposed method with existing supervised deep learning and classic reinforcement learning methods. Our simulations show that choosing an appropriate beam steering method depends on the target application and is a tradeoff between data rate and computational complexity. We also investigate tuning the size of our neural network depending on the number of transmit and receive antennas at the access point. Finally, we extend our method to the case of multiple links and introduce a federated learning (FL) approach to efficiently predict their mmWave beams by sharing only the weights of the locally trained neural networks (and not the local data). We investigate both synchronous and asynchronous FL methods. Our numerical simulations show the high potential of our approach, especially when the local available data is scarce or imperfect.</description><subject>Array signal processing</subject><subject>Beam steering</subject><subject>Beamforming</subject><subject>Channels</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Continuous beams</subject><subject>Deep learning</subject><subject>deep neural networks</subject><subject>Downlink</subject><subject>Engineering Sciences</subject><subject>federated learning</subject><subject>Millimeter waves</subject><subject>mmWave beamforming</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>self-supervised learning</subject><subject>Training</subject><subject>Uplink</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLw0AQxoMoWKt3wUvAk4fUfTT7ONZaWyHgIYEel00ya1Pycjcp6l9vQqSn-Zj5fTPD53n3GC0wRvI52a8XBBGyoJgjjJYX3gyHoQgIWYrLUVMWYMLZtXfj3BEhzFkYzrwkhtIEcd-CPRUOcv8VoPUj0LYu6k_fNNavqr0-gf8CuvLjDsCOg813WzZFN8q4TwPmb3e__vqg6xpKd-tdGV06uPuvcy952yTrXRB9bN_XqyjIKONdYEzOJE4N6GVKQ5rzPCQ55UwTKjJBtIBUMJqnLJcZYRnKjMHCmCzXHDMt6dx7mtYedKlaW1Ta_qhGF2q3itTYQzRkHBN0wgP7OLGtbb56cJ06Nr2th-8U4cM9KYUQA4UmKrONcxbMeS1GaoxZDTGrMWb1H_NgeZgsBQCcccmZFJLTPxl6d88</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Chafaa, Irched</creator><creator>Negrel, Romain</creator><creator>Belmega, E. Veronica</creator><creator>Debbah, Merouane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4336-4704</orcidid><orcidid>https://orcid.org/0000-0003-1467-5933</orcidid><orcidid>https://orcid.org/0000-0002-4195-5191</orcidid></search><sort><creationdate>202210</creationdate><title>Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels</title><author>Chafaa, Irched ; Negrel, Romain ; Belmega, E. Veronica ; Debbah, Merouane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Array signal processing</topic><topic>Beam steering</topic><topic>Beamforming</topic><topic>Channels</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Continuous beams</topic><topic>Deep learning</topic><topic>deep neural networks</topic><topic>Downlink</topic><topic>Engineering Sciences</topic><topic>federated learning</topic><topic>Millimeter waves</topic><topic>mmWave beamforming</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>self-supervised learning</topic><topic>Training</topic><topic>Uplink</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chafaa, Irched</creatorcontrib><creatorcontrib>Negrel, Romain</creatorcontrib><creatorcontrib>Belmega, E. Veronica</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chafaa, Irched</au><au>Negrel, Romain</au><au>Belmega, E. Veronica</au><au>Debbah, Merouane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-10</date><risdate>2022</risdate><volume>21</volume><issue>10</issue><spage>8803</spage><epage>8816</epage><pages>8803-8816</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave band for a single access point- user link. This complex channel-beam mapping is learned via data issued from the DeepMIMO dataset. We then compare our proposed method with existing supervised deep learning and classic reinforcement learning methods. Our simulations show that choosing an appropriate beam steering method depends on the target application and is a tradeoff between data rate and computational complexity. We also investigate tuning the size of our neural network depending on the number of transmit and receive antennas at the access point. Finally, we extend our method to the case of multiple links and introduce a federated learning (FL) approach to efficiently predict their mmWave beams by sharing only the weights of the locally trained neural networks (and not the local data). We investigate both synchronous and asynchronous FL methods. Our numerical simulations show the high potential of our approach, especially when the local available data is scarce or imperfect.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3170104</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4336-4704</orcidid><orcidid>https://orcid.org/0000-0003-1467-5933</orcidid><orcidid>https://orcid.org/0000-0002-4195-5191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2022-10, Vol.21 (10), p.8803-8816
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2723899888
source IEEE Electronic Library (IEL) Journals
subjects Array signal processing
Beam steering
Beamforming
Channels
Complexity
Computer simulation
Continuous beams
Deep learning
deep neural networks
Downlink
Engineering Sciences
federated learning
Millimeter waves
mmWave beamforming
Neural networks
Numerical methods
self-supervised learning
Training
Uplink
Wireless communication
title Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Deep%20Learning%20for%20mmWave%20Beam%20Steering%20Exploiting%20Sub-6%20GHz%20Channels&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Chafaa,%20Irched&rft.date=2022-10&rft.volume=21&rft.issue=10&rft.spage=8803&rft.epage=8816&rft.pages=8803-8816&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3170104&rft_dat=%3Cproquest_ieee_%3E2723899888%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723899888&rft_id=info:pmid/&rft_ieee_id=9769897&rfr_iscdi=true