Loading…
Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels
mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave ban...
Saved in:
Published in: | IEEE transactions on wireless communications 2022-10, Vol.21 (10), p.8803-8816 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93 |
container_end_page | 8816 |
container_issue | 10 |
container_start_page | 8803 |
container_title | IEEE transactions on wireless communications |
container_volume | 21 |
creator | Chafaa, Irched Negrel, Romain Belmega, E. Veronica Debbah, Merouane |
description | mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave band for a single access point- user link. This complex channel-beam mapping is learned via data issued from the DeepMIMO dataset. We then compare our proposed method with existing supervised deep learning and classic reinforcement learning methods. Our simulations show that choosing an appropriate beam steering method depends on the target application and is a tradeoff between data rate and computational complexity. We also investigate tuning the size of our neural network depending on the number of transmit and receive antennas at the access point. Finally, we extend our method to the case of multiple links and introduce a federated learning (FL) approach to efficiently predict their mmWave beams by sharing only the weights of the locally trained neural networks (and not the local data). We investigate both synchronous and asynchronous FL methods. Our numerical simulations show the high potential of our approach, especially when the local available data is scarce or imperfect. |
doi_str_mv | 10.1109/TWC.2022.3170104 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2723899888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9769897</ieee_id><sourcerecordid>2723899888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93</originalsourceid><addsrcrecordid>eNo9kMtLw0AQxoMoWKt3wUvAk4fUfTT7ONZaWyHgIYEel00ya1Pycjcp6l9vQqSn-Zj5fTPD53n3GC0wRvI52a8XBBGyoJgjjJYX3gyHoQgIWYrLUVMWYMLZtXfj3BEhzFkYzrwkhtIEcd-CPRUOcv8VoPUj0LYu6k_fNNavqr0-gf8CuvLjDsCOg813WzZFN8q4TwPmb3e__vqg6xpKd-tdGV06uPuvcy952yTrXRB9bN_XqyjIKONdYEzOJE4N6GVKQ5rzPCQ55UwTKjJBtIBUMJqnLJcZYRnKjMHCmCzXHDMt6dx7mtYedKlaW1Ta_qhGF2q3itTYQzRkHBN0wgP7OLGtbb56cJ06Nr2th-8U4cM9KYUQA4UmKrONcxbMeS1GaoxZDTGrMWb1H_NgeZgsBQCcccmZFJLTPxl6d88</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723899888</pqid></control><display><type>article</type><title>Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chafaa, Irched ; Negrel, Romain ; Belmega, E. Veronica ; Debbah, Merouane</creator><creatorcontrib>Chafaa, Irched ; Negrel, Romain ; Belmega, E. Veronica ; Debbah, Merouane</creatorcontrib><description>mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave band for a single access point- user link. This complex channel-beam mapping is learned via data issued from the DeepMIMO dataset. We then compare our proposed method with existing supervised deep learning and classic reinforcement learning methods. Our simulations show that choosing an appropriate beam steering method depends on the target application and is a tradeoff between data rate and computational complexity. We also investigate tuning the size of our neural network depending on the number of transmit and receive antennas at the access point. Finally, we extend our method to the case of multiple links and introduce a federated learning (FL) approach to efficiently predict their mmWave beams by sharing only the weights of the locally trained neural networks (and not the local data). We investigate both synchronous and asynchronous FL methods. Our numerical simulations show the high potential of our approach, especially when the local available data is scarce or imperfect.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3170104</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Array signal processing ; Beam steering ; Beamforming ; Channels ; Complexity ; Computer simulation ; Continuous beams ; Deep learning ; deep neural networks ; Downlink ; Engineering Sciences ; federated learning ; Millimeter waves ; mmWave beamforming ; Neural networks ; Numerical methods ; self-supervised learning ; Training ; Uplink ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-10, Vol.21 (10), p.8803-8816</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93</citedby><cites>FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93</cites><orcidid>0000-0003-4336-4704 ; 0000-0003-1467-5933 ; 0000-0002-4195-5191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9769897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03567120$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chafaa, Irched</creatorcontrib><creatorcontrib>Negrel, Romain</creatorcontrib><creatorcontrib>Belmega, E. Veronica</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><title>Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave band for a single access point- user link. This complex channel-beam mapping is learned via data issued from the DeepMIMO dataset. We then compare our proposed method with existing supervised deep learning and classic reinforcement learning methods. Our simulations show that choosing an appropriate beam steering method depends on the target application and is a tradeoff between data rate and computational complexity. We also investigate tuning the size of our neural network depending on the number of transmit and receive antennas at the access point. Finally, we extend our method to the case of multiple links and introduce a federated learning (FL) approach to efficiently predict their mmWave beams by sharing only the weights of the locally trained neural networks (and not the local data). We investigate both synchronous and asynchronous FL methods. Our numerical simulations show the high potential of our approach, especially when the local available data is scarce or imperfect.</description><subject>Array signal processing</subject><subject>Beam steering</subject><subject>Beamforming</subject><subject>Channels</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Continuous beams</subject><subject>Deep learning</subject><subject>deep neural networks</subject><subject>Downlink</subject><subject>Engineering Sciences</subject><subject>federated learning</subject><subject>Millimeter waves</subject><subject>mmWave beamforming</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>self-supervised learning</subject><subject>Training</subject><subject>Uplink</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLw0AQxoMoWKt3wUvAk4fUfTT7ONZaWyHgIYEel00ya1Pycjcp6l9vQqSn-Zj5fTPD53n3GC0wRvI52a8XBBGyoJgjjJYX3gyHoQgIWYrLUVMWYMLZtXfj3BEhzFkYzrwkhtIEcd-CPRUOcv8VoPUj0LYu6k_fNNavqr0-gf8CuvLjDsCOg813WzZFN8q4TwPmb3e__vqg6xpKd-tdGV06uPuvcy952yTrXRB9bN_XqyjIKONdYEzOJE4N6GVKQ5rzPCQ55UwTKjJBtIBUMJqnLJcZYRnKjMHCmCzXHDMt6dx7mtYedKlaW1Ta_qhGF2q3itTYQzRkHBN0wgP7OLGtbb56cJ06Nr2th-8U4cM9KYUQA4UmKrONcxbMeS1GaoxZDTGrMWb1H_NgeZgsBQCcccmZFJLTPxl6d88</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Chafaa, Irched</creator><creator>Negrel, Romain</creator><creator>Belmega, E. Veronica</creator><creator>Debbah, Merouane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4336-4704</orcidid><orcidid>https://orcid.org/0000-0003-1467-5933</orcidid><orcidid>https://orcid.org/0000-0002-4195-5191</orcidid></search><sort><creationdate>202210</creationdate><title>Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels</title><author>Chafaa, Irched ; Negrel, Romain ; Belmega, E. Veronica ; Debbah, Merouane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Array signal processing</topic><topic>Beam steering</topic><topic>Beamforming</topic><topic>Channels</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Continuous beams</topic><topic>Deep learning</topic><topic>deep neural networks</topic><topic>Downlink</topic><topic>Engineering Sciences</topic><topic>federated learning</topic><topic>Millimeter waves</topic><topic>mmWave beamforming</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>self-supervised learning</topic><topic>Training</topic><topic>Uplink</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chafaa, Irched</creatorcontrib><creatorcontrib>Negrel, Romain</creatorcontrib><creatorcontrib>Belmega, E. Veronica</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chafaa, Irched</au><au>Negrel, Romain</au><au>Belmega, E. Veronica</au><au>Debbah, Merouane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-10</date><risdate>2022</risdate><volume>21</volume><issue>10</issue><spage>8803</spage><epage>8816</epage><pages>8803-8816</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>mmWave communication requires accurate and continuous beam steering to overcome the severe propagation loss and user mobility. In this paper, we leverage a self-supervised deep learning approach to exploit sub-6 GHz channels and propose a novel method to predict beamforming vectors in the mmWave band for a single access point- user link. This complex channel-beam mapping is learned via data issued from the DeepMIMO dataset. We then compare our proposed method with existing supervised deep learning and classic reinforcement learning methods. Our simulations show that choosing an appropriate beam steering method depends on the target application and is a tradeoff between data rate and computational complexity. We also investigate tuning the size of our neural network depending on the number of transmit and receive antennas at the access point. Finally, we extend our method to the case of multiple links and introduce a federated learning (FL) approach to efficiently predict their mmWave beams by sharing only the weights of the locally trained neural networks (and not the local data). We investigate both synchronous and asynchronous FL methods. Our numerical simulations show the high potential of our approach, especially when the local available data is scarce or imperfect.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3170104</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4336-4704</orcidid><orcidid>https://orcid.org/0000-0003-1467-5933</orcidid><orcidid>https://orcid.org/0000-0002-4195-5191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2022-10, Vol.21 (10), p.8803-8816 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_journals_2723899888 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Array signal processing Beam steering Beamforming Channels Complexity Computer simulation Continuous beams Deep learning deep neural networks Downlink Engineering Sciences federated learning Millimeter waves mmWave beamforming Neural networks Numerical methods self-supervised learning Training Uplink Wireless communication |
title | Self-Supervised Deep Learning for mmWave Beam Steering Exploiting Sub-6 GHz Channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Supervised%20Deep%20Learning%20for%20mmWave%20Beam%20Steering%20Exploiting%20Sub-6%20GHz%20Channels&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Chafaa,%20Irched&rft.date=2022-10&rft.volume=21&rft.issue=10&rft.spage=8803&rft.epage=8816&rft.pages=8803-8816&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3170104&rft_dat=%3Cproquest_ieee_%3E2723899888%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ffd691bfea4b353d7d52d376a238c82a8eb863db6d9c26c0cff18ffcda716a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2723899888&rft_id=info:pmid/&rft_ieee_id=9769897&rfr_iscdi=true |