Loading…
Theoretical Analysis of Spectral Broadening Through Saturable Photoexcited-Carrier Refraction in Graphene-Covered Nanowires
We perform a thorough study of the spectral broadening of short and intense pulses propagating in graphene- covered nanowires departing from a saturable photoexcited-carrier refraction (SPCR) model. In particular, we put forth an analytical expression for the instantaneous frequency of the traversin...
Saved in:
Published in: | IEEE journal of quantum electronics 2022-12, Vol.58 (6), p.1-5 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We perform a thorough study of the spectral broadening of short and intense pulses propagating in graphene- covered nanowires departing from a saturable photoexcited-carrier refraction (SPCR) model. In particular, we put forth an analytical expression for the instantaneous frequency of the traversing pulse, in a relevant limiting case, which allows to calculate the spectral broadening and frequency shift experienced by the pulse and elucidate the role of its initial chirp. Most interestingly, both the spectral broadening and frequency shift are found to be maximized for an optimal input power. In all cases, results from analytical expressions are found to be in excellent agreement with numerical solutions of the propagation equations. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2022.3205937 |