Loading…
Ecological niche modeling, niche overlap, and good old Rabinowitz’s rarities applied to the conservation of gymnosperms in a global biodiversity hotspot
Context Biodiversity hotspots harbor 77% of endemic plant species. Patagonian Temperate Forest (PTF) is a part of a biodiversity hotspot, but over the past centuries, has been over-exploited, fragmented and replaced with exotic species plantations, lately also threatened by climate change. Objective...
Saved in:
Published in: | Landscape ecology 2022-10, Vol.37 (10), p.2571-2588 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Context
Biodiversity hotspots harbor 77% of endemic plant species. Patagonian Temperate Forest (PTF) is a part of a biodiversity hotspot, but over the past centuries, has been over-exploited, fragmented and replaced with exotic species plantations, lately also threatened by climate change.
Objectives
Our aim is to better understand patterns of habitat suitability and niche overlap of nine endemic gymnosperm species, key elements of the PTF, complementing traditional approaches of biodiversity conservation.
Methods
Using R packages and 3016 occurrence data, we deployed ecological niche models (ENM) in MaxEnt via kuenm, and classified species according to Rabinowitz’s types of rarity. We then overlapped their niches calculating Schoener's D index, and considered types of rarity in a spatial ecological context. Finally, we overlay high species’ suitability and protected areas and detected conservation priorities using GapAnalysis.
Results
We generated simplified ENMs for nine Patagonian gymnosperms and found that most niches overlap, and only one species displayed a unique niche. Surprisingly, we found that three species have divergent suitability of habitats across the landscape and not related with previously published geographic structure of neutral genetic variation. We showed that the rarer a species is the smaller niche volume tend to have, that six out of nine studied species have high conservation priority, and that there are conservation gaps in the PTF.
Conclusion
Our approach showed that there are unprotected suitable areas for native key species at high risk in PTF. Suggesting that integrating habitat-suitability models of multiple species, types of rarity, and niche overlap, can be a handy tool to identify potential conservation areas in global biodiversity hotspots. |
---|---|
ISSN: | 0921-2973 1572-9761 |
DOI: | 10.1007/s10980-022-01502-z |