Loading…

Efficient Elliptic Curve Operators for Jacobian Coordinates

The speed up of group operations on elliptic curves is proposed using a new type of projective coordinate representation. These operations are the most common computations in key exchange and encryption for both current and postquantum technology. The boost this improvement brings to computational e...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-10, Vol.11 (19), p.3123
Main Authors: Eid, Wesam, Al-Somani, Turki F., Silaghi, Marius C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-30cad7f41f4d7cf66b62aa3810b01a1752cb6724236d745a9edd06c28e729fa43
cites cdi_FETCH-LOGICAL-c361t-30cad7f41f4d7cf66b62aa3810b01a1752cb6724236d745a9edd06c28e729fa43
container_end_page
container_issue 19
container_start_page 3123
container_title Electronics (Basel)
container_volume 11
creator Eid, Wesam
Al-Somani, Turki F.
Silaghi, Marius C.
description The speed up of group operations on elliptic curves is proposed using a new type of projective coordinate representation. These operations are the most common computations in key exchange and encryption for both current and postquantum technology. The boost this improvement brings to computational efficiency impacts not only encryption efforts but also attacks. For maintaining security, the community needs to take note of this development as it may need to operate changes in the key size of various algorithms. Our proposed projective representation can be viewed as a warp on the Jacobian projective coordinates, or as a new operation replacing the addition in a Jacobian projective representation, basically yielding a new group with the same algebra elements and homomorphic to it. Efficient algorithms are introduced for computing the expression Pk+Q where P and Q are points on the curve and k is an integer. They exploit optimized versions for particular k values. Measurements of the numbers of basic computer instructions needed for operations based on the new representation show clear improvements. The experiments are based on benchmarks selected using standard NIST elliptic curves.
doi_str_mv 10.3390/electronics11193123
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2724229869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745607599</galeid><sourcerecordid>A745607599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-30cad7f41f4d7cf66b62aa3810b01a1752cb6724236d745a9edd06c28e729fa43</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWGp_gZcFz1vzsU02eCpL_aLQi55DNplIyjZZk1Tw37ulHjw4c5hheJ954UXoluAlYxLfwwCmpBi8yYQQyQhlF2hGsZC1pJJe_tmv0SLnPZ5KEtYyPEMPG-e88RBKtRkGPxZvqu6YvqDajZB0iSlXLqbqVZvYex2qLsZkfdAF8g26cnrIsPidc_T-uHnrnuvt7umlW29rwzgpNcNGW-Ea4horjOO851Rr1hLcY6KJWFHTc0EbyrgVzUpLsBZzQ1sQVDrdsDm6O_8dU_w8Qi5qH48pTJaKnjgqWy4n1fKs-tADKB9cLEmbqS0cvIkBnJ_u68mBY7GSJ4CdAZNizgmcGpM_6PStCFanZNU_ybIfYuZt4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724229869</pqid></control><display><type>article</type><title>Efficient Elliptic Curve Operators for Jacobian Coordinates</title><source>Publicly Available Content (ProQuest)</source><creator>Eid, Wesam ; Al-Somani, Turki F. ; Silaghi, Marius C.</creator><creatorcontrib>Eid, Wesam ; Al-Somani, Turki F. ; Silaghi, Marius C.</creatorcontrib><description>The speed up of group operations on elliptic curves is proposed using a new type of projective coordinate representation. These operations are the most common computations in key exchange and encryption for both current and postquantum technology. The boost this improvement brings to computational efficiency impacts not only encryption efforts but also attacks. For maintaining security, the community needs to take note of this development as it may need to operate changes in the key size of various algorithms. Our proposed projective representation can be viewed as a warp on the Jacobian projective coordinates, or as a new operation replacing the addition in a Jacobian projective representation, basically yielding a new group with the same algebra elements and homomorphic to it. Efficient algorithms are introduced for computing the expression Pk+Q where P and Q are points on the curve and k is an integer. They exploit optimized versions for particular k values. Measurements of the numbers of basic computer instructions needed for operations based on the new representation show clear improvements. The experiments are based on benchmarks selected using standard NIST elliptic curves.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11193123</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Cryptography ; Curves ; Data security ; Digital signatures ; Mathematical optimization ; Methods ; Operators (mathematics) ; Quantum computing ; Representations</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (19), p.3123</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-30cad7f41f4d7cf66b62aa3810b01a1752cb6724236d745a9edd06c28e729fa43</citedby><cites>FETCH-LOGICAL-c361t-30cad7f41f4d7cf66b62aa3810b01a1752cb6724236d745a9edd06c28e729fa43</cites><orcidid>0000-0001-5029-4850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2724229869/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2724229869?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Eid, Wesam</creatorcontrib><creatorcontrib>Al-Somani, Turki F.</creatorcontrib><creatorcontrib>Silaghi, Marius C.</creatorcontrib><title>Efficient Elliptic Curve Operators for Jacobian Coordinates</title><title>Electronics (Basel)</title><description>The speed up of group operations on elliptic curves is proposed using a new type of projective coordinate representation. These operations are the most common computations in key exchange and encryption for both current and postquantum technology. The boost this improvement brings to computational efficiency impacts not only encryption efforts but also attacks. For maintaining security, the community needs to take note of this development as it may need to operate changes in the key size of various algorithms. Our proposed projective representation can be viewed as a warp on the Jacobian projective coordinates, or as a new operation replacing the addition in a Jacobian projective representation, basically yielding a new group with the same algebra elements and homomorphic to it. Efficient algorithms are introduced for computing the expression Pk+Q where P and Q are points on the curve and k is an integer. They exploit optimized versions for particular k values. Measurements of the numbers of basic computer instructions needed for operations based on the new representation show clear improvements. The experiments are based on benchmarks selected using standard NIST elliptic curves.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Curves</subject><subject>Data security</subject><subject>Digital signatures</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Operators (mathematics)</subject><subject>Quantum computing</subject><subject>Representations</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkE1LAzEQhoMoWGp_gZcFz1vzsU02eCpL_aLQi55DNplIyjZZk1Tw37ulHjw4c5hheJ954UXoluAlYxLfwwCmpBi8yYQQyQhlF2hGsZC1pJJe_tmv0SLnPZ5KEtYyPEMPG-e88RBKtRkGPxZvqu6YvqDajZB0iSlXLqbqVZvYex2qLsZkfdAF8g26cnrIsPidc_T-uHnrnuvt7umlW29rwzgpNcNGW-Ea4horjOO851Rr1hLcY6KJWFHTc0EbyrgVzUpLsBZzQ1sQVDrdsDm6O_8dU_w8Qi5qH48pTJaKnjgqWy4n1fKs-tADKB9cLEmbqS0cvIkBnJ_u68mBY7GSJ4CdAZNizgmcGpM_6PStCFanZNU_ybIfYuZt4Q</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Eid, Wesam</creator><creator>Al-Somani, Turki F.</creator><creator>Silaghi, Marius C.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5029-4850</orcidid></search><sort><creationdate>20221001</creationdate><title>Efficient Elliptic Curve Operators for Jacobian Coordinates</title><author>Eid, Wesam ; Al-Somani, Turki F. ; Silaghi, Marius C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-30cad7f41f4d7cf66b62aa3810b01a1752cb6724236d745a9edd06c28e729fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Curves</topic><topic>Data security</topic><topic>Digital signatures</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Operators (mathematics)</topic><topic>Quantum computing</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eid, Wesam</creatorcontrib><creatorcontrib>Al-Somani, Turki F.</creatorcontrib><creatorcontrib>Silaghi, Marius C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eid, Wesam</au><au>Al-Somani, Turki F.</au><au>Silaghi, Marius C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Elliptic Curve Operators for Jacobian Coordinates</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>19</issue><spage>3123</spage><pages>3123-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The speed up of group operations on elliptic curves is proposed using a new type of projective coordinate representation. These operations are the most common computations in key exchange and encryption for both current and postquantum technology. The boost this improvement brings to computational efficiency impacts not only encryption efforts but also attacks. For maintaining security, the community needs to take note of this development as it may need to operate changes in the key size of various algorithms. Our proposed projective representation can be viewed as a warp on the Jacobian projective coordinates, or as a new operation replacing the addition in a Jacobian projective representation, basically yielding a new group with the same algebra elements and homomorphic to it. Efficient algorithms are introduced for computing the expression Pk+Q where P and Q are points on the curve and k is an integer. They exploit optimized versions for particular k values. Measurements of the numbers of basic computer instructions needed for operations based on the new representation show clear improvements. The experiments are based on benchmarks selected using standard NIST elliptic curves.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11193123</doi><orcidid>https://orcid.org/0000-0001-5029-4850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-10, Vol.11 (19), p.3123
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2724229869
source Publicly Available Content (ProQuest)
subjects Algorithms
Cryptography
Curves
Data security
Digital signatures
Mathematical optimization
Methods
Operators (mathematics)
Quantum computing
Representations
title Efficient Elliptic Curve Operators for Jacobian Coordinates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Elliptic%20Curve%20Operators%20for%20Jacobian%20Coordinates&rft.jtitle=Electronics%20(Basel)&rft.au=Eid,%20Wesam&rft.date=2022-10-01&rft.volume=11&rft.issue=19&rft.spage=3123&rft.pages=3123-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11193123&rft_dat=%3Cgale_proqu%3EA745607599%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-30cad7f41f4d7cf66b62aa3810b01a1752cb6724236d745a9edd06c28e729fa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724229869&rft_id=info:pmid/&rft_galeid=A745607599&rfr_iscdi=true