Loading…
Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women
The use of artificial intelligence in healthcare in general and in obstetrics and gynecology in particular has great potential. Specifically, machine learning methods could help improve the health and well-being of pregnant women, closely monitoring their health parameters during pregnancy, or reduc...
Saved in:
Published in: | Electronics (Basel) 2022-10, Vol.11 (19), p.3240 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-bd320ba28cfee74e02fde5f7b95ab7d7c4ce2191df496457255e1276246b806f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-bd320ba28cfee74e02fde5f7b95ab7d7c4ce2191df496457255e1276246b806f3 |
container_end_page | |
container_issue | 19 |
container_start_page | 3240 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Gómez-Jemes, Lola Oprescu, Andreea Madalina Chimenea-Toscano, Ángel García-Díaz, Lutgardo Romero-Ternero, María del Carmen |
description | The use of artificial intelligence in healthcare in general and in obstetrics and gynecology in particular has great potential. Specifically, machine learning methods could help improve the health and well-being of pregnant women, closely monitoring their health parameters during pregnancy, or reducing maternal and perinatal morbidity and mortality with early detection of pathologies. In this work, we propose a machine learning model to predict risk events in pregnancy, in particular the prediction of pre-eclampsia and intrauterine growth restriction, using Doppler measures of the uterine artery, sFlt-1, and PlGF values. For this purpose, we used a public dataset from a study carried out by the University Medical Center of Ljubljana, in which data were collected from 95 pregnant women with pre-eclampsia and intrauterine growth restriction. We adopted a multi-label approach to accomplish the prediction task. Different classifiers were evaluated and compared. The performance of each model was tested in terms of accuracy, precision, recall, F1 score, Hamming loss, and AUC-ROC. On the basis of these parameters, a variation of the decision tree classifier was found to be the best performing model. Our model had a robust recall metric (0.89) and an AUC ROC metric (0.87), taking into account the size of the data and the unbalance of the class. |
doi_str_mv | 10.3390/electronics11193240 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2724237420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597690</galeid><sourcerecordid>A745597690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bd320ba28cfee74e02fde5f7b95ab7d7c4ce2191df496457255e1276246b806f3</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBUvsLvCx43pqv3TTHUmotVBRRPIZsdtKm7CY1SRH_vbtUUMGZwxuG9-aDl2XXGE0pFegWWtApeGd1xBgLShg6y0YEcVEIIsj5r_oym8S4R30ITGcUjTL5oPTOOsg3oIKzbpsnnz8FaKxOAxZL3aruEK3KlWvytUtBHROEQbIK_iPt8meIKfR0611u3SDaOuVS_uY7cFfZhVFthMk3jrPXu-XL4r7YPK7Wi_mm0BSLVNQNJahWZKYNAGeAiGmgNLwWpap5wzXTQLDAjWGiYiUnZQmY8Iqwqp6hytBxdnOaewj-_dhfJPf-GFy_UhJOGKGcEfTD2qoWpHXG9-_ozkYt55yVpeCVGFjTf1h9NtBZ7R0Y2_f_COhJoIOPMYCRh2A7FT4lRnLwSP7jEf0CUnKGxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724237420</pqid></control><display><type>article</type><title>Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women</title><source>Publicly Available Content Database</source><creator>Gómez-Jemes, Lola ; Oprescu, Andreea Madalina ; Chimenea-Toscano, Ángel ; García-Díaz, Lutgardo ; Romero-Ternero, María del Carmen</creator><creatorcontrib>Gómez-Jemes, Lola ; Oprescu, Andreea Madalina ; Chimenea-Toscano, Ángel ; García-Díaz, Lutgardo ; Romero-Ternero, María del Carmen</creatorcontrib><description>The use of artificial intelligence in healthcare in general and in obstetrics and gynecology in particular has great potential. Specifically, machine learning methods could help improve the health and well-being of pregnant women, closely monitoring their health parameters during pregnancy, or reducing maternal and perinatal morbidity and mortality with early detection of pathologies. In this work, we propose a machine learning model to predict risk events in pregnancy, in particular the prediction of pre-eclampsia and intrauterine growth restriction, using Doppler measures of the uterine artery, sFlt-1, and PlGF values. For this purpose, we used a public dataset from a study carried out by the University Medical Center of Ljubljana, in which data were collected from 95 pregnant women with pre-eclampsia and intrauterine growth restriction. We adopted a multi-label approach to accomplish the prediction task. Different classifiers were evaluated and compared. The performance of each model was tested in terms of accuracy, precision, recall, F1 score, Hamming loss, and AUC-ROC. On the basis of these parameters, a variation of the decision tree classifier was found to be the best performing model. Our model had a robust recall metric (0.89) and an AUC ROC metric (0.87), taking into account the size of the data and the unbalance of the class.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11193240</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Biomarkers ; Classification ; Classifiers ; Datasets ; Decision trees ; Diagnosis ; Fetuses ; Gestational age ; Gestational diabetes ; Gynecology ; Health aspects ; Health care facilities ; Hypertension ; Machine learning ; Mathematical models ; Mortality ; Parameters ; Preeclampsia ; Pregnancy ; Pregnancy, Complications of ; Pregnant women ; Recall ; Ultrasonic imaging ; Variables ; Veins & arteries ; Womens health</subject><ispartof>Electronics (Basel), 2022-10, Vol.11 (19), p.3240</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bd320ba28cfee74e02fde5f7b95ab7d7c4ce2191df496457255e1276246b806f3</citedby><cites>FETCH-LOGICAL-c319t-bd320ba28cfee74e02fde5f7b95ab7d7c4ce2191df496457255e1276246b806f3</cites><orcidid>0000-0002-5601-0553 ; 0000-0001-5040-4896 ; 0000-0003-4839-2034 ; 0000-0003-3308-4688 ; 0000-0001-6965-9485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2724237420/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2724237420?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gómez-Jemes, Lola</creatorcontrib><creatorcontrib>Oprescu, Andreea Madalina</creatorcontrib><creatorcontrib>Chimenea-Toscano, Ángel</creatorcontrib><creatorcontrib>García-Díaz, Lutgardo</creatorcontrib><creatorcontrib>Romero-Ternero, María del Carmen</creatorcontrib><title>Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women</title><title>Electronics (Basel)</title><description>The use of artificial intelligence in healthcare in general and in obstetrics and gynecology in particular has great potential. Specifically, machine learning methods could help improve the health and well-being of pregnant women, closely monitoring their health parameters during pregnancy, or reducing maternal and perinatal morbidity and mortality with early detection of pathologies. In this work, we propose a machine learning model to predict risk events in pregnancy, in particular the prediction of pre-eclampsia and intrauterine growth restriction, using Doppler measures of the uterine artery, sFlt-1, and PlGF values. For this purpose, we used a public dataset from a study carried out by the University Medical Center of Ljubljana, in which data were collected from 95 pregnant women with pre-eclampsia and intrauterine growth restriction. We adopted a multi-label approach to accomplish the prediction task. Different classifiers were evaluated and compared. The performance of each model was tested in terms of accuracy, precision, recall, F1 score, Hamming loss, and AUC-ROC. On the basis of these parameters, a variation of the decision tree classifier was found to be the best performing model. Our model had a robust recall metric (0.89) and an AUC ROC metric (0.87), taking into account the size of the data and the unbalance of the class.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Diagnosis</subject><subject>Fetuses</subject><subject>Gestational age</subject><subject>Gestational diabetes</subject><subject>Gynecology</subject><subject>Health aspects</subject><subject>Health care facilities</subject><subject>Hypertension</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mortality</subject><subject>Parameters</subject><subject>Preeclampsia</subject><subject>Pregnancy</subject><subject>Pregnancy, Complications of</subject><subject>Pregnant women</subject><subject>Recall</subject><subject>Ultrasonic imaging</subject><subject>Variables</subject><subject>Veins & arteries</subject><subject>Womens health</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUU1LAzEQXUTBUvsLvCx43pqv3TTHUmotVBRRPIZsdtKm7CY1SRH_vbtUUMGZwxuG9-aDl2XXGE0pFegWWtApeGd1xBgLShg6y0YEcVEIIsj5r_oym8S4R30ITGcUjTL5oPTOOsg3oIKzbpsnnz8FaKxOAxZL3aruEK3KlWvytUtBHROEQbIK_iPt8meIKfR0611u3SDaOuVS_uY7cFfZhVFthMk3jrPXu-XL4r7YPK7Wi_mm0BSLVNQNJahWZKYNAGeAiGmgNLwWpap5wzXTQLDAjWGiYiUnZQmY8Iqwqp6hytBxdnOaewj-_dhfJPf-GFy_UhJOGKGcEfTD2qoWpHXG9-_ozkYt55yVpeCVGFjTf1h9NtBZ7R0Y2_f_COhJoIOPMYCRh2A7FT4lRnLwSP7jEf0CUnKGxg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Gómez-Jemes, Lola</creator><creator>Oprescu, Andreea Madalina</creator><creator>Chimenea-Toscano, Ángel</creator><creator>García-Díaz, Lutgardo</creator><creator>Romero-Ternero, María del Carmen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5601-0553</orcidid><orcidid>https://orcid.org/0000-0001-5040-4896</orcidid><orcidid>https://orcid.org/0000-0003-4839-2034</orcidid><orcidid>https://orcid.org/0000-0003-3308-4688</orcidid><orcidid>https://orcid.org/0000-0001-6965-9485</orcidid></search><sort><creationdate>20221001</creationdate><title>Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women</title><author>Gómez-Jemes, Lola ; Oprescu, Andreea Madalina ; Chimenea-Toscano, Ángel ; García-Díaz, Lutgardo ; Romero-Ternero, María del Carmen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bd320ba28cfee74e02fde5f7b95ab7d7c4ce2191df496457255e1276246b806f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Diagnosis</topic><topic>Fetuses</topic><topic>Gestational age</topic><topic>Gestational diabetes</topic><topic>Gynecology</topic><topic>Health aspects</topic><topic>Health care facilities</topic><topic>Hypertension</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mortality</topic><topic>Parameters</topic><topic>Preeclampsia</topic><topic>Pregnancy</topic><topic>Pregnancy, Complications of</topic><topic>Pregnant women</topic><topic>Recall</topic><topic>Ultrasonic imaging</topic><topic>Variables</topic><topic>Veins & arteries</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Jemes, Lola</creatorcontrib><creatorcontrib>Oprescu, Andreea Madalina</creatorcontrib><creatorcontrib>Chimenea-Toscano, Ángel</creatorcontrib><creatorcontrib>García-Díaz, Lutgardo</creatorcontrib><creatorcontrib>Romero-Ternero, María del Carmen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Jemes, Lola</au><au>Oprescu, Andreea Madalina</au><au>Chimenea-Toscano, Ángel</au><au>García-Díaz, Lutgardo</au><au>Romero-Ternero, María del Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>11</volume><issue>19</issue><spage>3240</spage><pages>3240-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The use of artificial intelligence in healthcare in general and in obstetrics and gynecology in particular has great potential. Specifically, machine learning methods could help improve the health and well-being of pregnant women, closely monitoring their health parameters during pregnancy, or reducing maternal and perinatal morbidity and mortality with early detection of pathologies. In this work, we propose a machine learning model to predict risk events in pregnancy, in particular the prediction of pre-eclampsia and intrauterine growth restriction, using Doppler measures of the uterine artery, sFlt-1, and PlGF values. For this purpose, we used a public dataset from a study carried out by the University Medical Center of Ljubljana, in which data were collected from 95 pregnant women with pre-eclampsia and intrauterine growth restriction. We adopted a multi-label approach to accomplish the prediction task. Different classifiers were evaluated and compared. The performance of each model was tested in terms of accuracy, precision, recall, F1 score, Hamming loss, and AUC-ROC. On the basis of these parameters, a variation of the decision tree classifier was found to be the best performing model. Our model had a robust recall metric (0.89) and an AUC ROC metric (0.87), taking into account the size of the data and the unbalance of the class.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11193240</doi><orcidid>https://orcid.org/0000-0002-5601-0553</orcidid><orcidid>https://orcid.org/0000-0001-5040-4896</orcidid><orcidid>https://orcid.org/0000-0003-4839-2034</orcidid><orcidid>https://orcid.org/0000-0003-3308-4688</orcidid><orcidid>https://orcid.org/0000-0001-6965-9485</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-10, Vol.11 (19), p.3240 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2724237420 |
source | Publicly Available Content Database |
subjects | Algorithms Artificial intelligence Biomarkers Classification Classifiers Datasets Decision trees Diagnosis Fetuses Gestational age Gestational diabetes Gynecology Health aspects Health care facilities Hypertension Machine learning Mathematical models Mortality Parameters Preeclampsia Pregnancy Pregnancy, Complications of Pregnant women Recall Ultrasonic imaging Variables Veins & arteries Womens health |
title | Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20to%20Predict%20Pre-Eclampsia%20and%20Intrauterine%20Growth%20Restriction%20in%20Pregnant%20Women&rft.jtitle=Electronics%20(Basel)&rft.au=G%C3%B3mez-Jemes,%20Lola&rft.date=2022-10-01&rft.volume=11&rft.issue=19&rft.spage=3240&rft.pages=3240-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11193240&rft_dat=%3Cgale_proqu%3EA745597690%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bd320ba28cfee74e02fde5f7b95ab7d7c4ce2191df496457255e1276246b806f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724237420&rft_id=info:pmid/&rft_galeid=A745597690&rfr_iscdi=true |