Loading…
Potential Decay Simulation on Insulating Films
Surface potential decay (SPD) of a corona charged polymeric material is a powerful tool to characterise electrical properties such as charge transport, trapping/detrapping and recombination. Over the years, various predictive simulation techniques have been proposed to describe charge transport with...
Saved in:
Published in: | Latvian Journal of Physics and Technical Sciences 2022-10, Vol.59 (5), p.58-71 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Surface potential decay (SPD) of a corona charged polymeric material is a powerful tool to characterise electrical properties such as charge transport, trapping/detrapping and recombination. Over the years, various predictive simulation techniques have been proposed to describe charge transport within the material. Despite recent progress, it appears that there have been a few attempts to theoretically interpret the nature of the charge migration on the insulation surface. The aim of the present paper is to introduce a new technique with differential evolution algorithm (DEA) to reveal the steady state surface potential decay experimental results. Experimental measurement was carried on a thin film of polyethylene terephthalate (thickness: 0.5 mm; surface: 50 mm × 50 mm). The domains of variation of the factors used were respectively: 1000 V to 1800 V; 25 to 55 °C; 50 % to 80 %. The simulation results show that computational modelling and optimization approaches may improve the effectiveness to characterise electrical properties of polymers. More importantly, these studies demonstrate that DEA is effective and performs better than the experimental design method. |
---|---|
ISSN: | 2255-8896 0868-8257 2255-8896 2199-6156 |
DOI: | 10.2478/lpts-2022-0041 |