Loading…

Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia

Harvesting energy from solar radiation in Malaysia attracts the attention of researchers to utilize the potential by ongoing improvement. Roofing material with low albedo absorbs the heat, that can then be harvested using a thermoelectric generator. Previous research only measured the open-circuit v...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-10, Vol.14 (19), p.12521
Main Authors: Rejab, Muhammad Nazri, Marwah, Omar Mohd Faizan, Johar, Muhammad Akmal, Ribuan, Mohamed Najib
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Harvesting energy from solar radiation in Malaysia attracts the attention of researchers to utilize the potential by ongoing improvement. Roofing material with low albedo absorbs the heat, that can then be harvested using a thermoelectric generator. Previous research only measured the open-circuit voltage with different thermoelectric generator configurations. Low power output limits the potential to be utilized. The low output power can be increased using a DC converter. However, the converter must be tuned concerning low- and high-voltage levels, bipolar, and the maximum power point tracking. Therefore, this paper presents a dual-level voltage bipolar (DLVB) thermal energy harvesting system. The circuit is tested at constant and various time intervals to evaluate the system’s functionality and performance. Experiment results show that the proposed harvesting system can boost from 0.6 and 1.6 V to achieve the optimum level. The mean efficiency of the harvesting circuit obtains 91.92% at various time intervals. Further, the field test result obtains output power from 1.45 to 66.1 mW, with the mean efficiency range of 89.62% to 92.98%. Furthermore, recommendations are listed for future research.
ISSN:2071-1050
2071-1050
DOI:10.3390/su141912521