Loading…

Research on intelligent vehicle lane changing and obstacle avoidance control based on road adhesion coefficient

Aimed at the safety and stability problems of intelligent vehicles under extreme conditions such as low adhesion road surface and emergency lane change and obstacle avoidance, this article designs a lane change and obstacle avoidance controller based on road adhesion coefficient. Using the nonlinear...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control 2022-11, Vol.28 (21-22), p.3269-3285
Main Authors: Huang, Kang, Jiang, Cheng, Qiu, Ming-ming, Wu, Di, Zhang, Bing-zhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aimed at the safety and stability problems of intelligent vehicles under extreme conditions such as low adhesion road surface and emergency lane change and obstacle avoidance, this article designs a lane change and obstacle avoidance controller based on road adhesion coefficient. Using the nonlinear vehicle dynamics model as the prediction model, using the recursive least squares method to identify the road adhesion coefficient, considering the road adhesion coefficient to plan and adjust in the obstacle avoidance path as well as limit constraint conditions of the model predictive control controller, using model predictive control method for the expectation of intelligent vehicle trajectory tracking, travels tremendously guarantee the security and stability of driving. The joint CarSim–Simulink simulations results show that under poor road conditions, the trajectory tracking accuracy after optimization is higher and the vehicle is less prone to sideslip and instability. The lane change controller designed in this article has strong adaptability to different road surface adhesion coefficient, and all parameters can be controlled within a reasonable safety range at different speeds, with good robustness.
ISSN:1077-5463
1741-2986
DOI:10.1177/10775463211029139