Loading…
Fast Multivariate Probit Estimation via a Two-Stage Composite Likelihood
The multivariate probit is popular for modeling correlated binary data, with an attractive balance of flexibility and simplicity. However, considerable challenges remain in computation and in devising a clear statistical framework. Interest in the multivariate probit has increased in recent years. C...
Saved in:
Published in: | Statistics in biosciences 2022-12, Vol.14 (3), p.533-549 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The multivariate probit is popular for modeling correlated binary data, with an attractive balance of flexibility and simplicity. However, considerable challenges remain in computation and in devising a clear statistical framework. Interest in the multivariate probit has increased in recent years. Current applications include genomics and precision medicine, where simultaneous modeling of multiple traits may be of interest, and computational efficiency is an important consideration. We propose a fast method for multivariate probit estimation via a two-stage composite likelihood. We explore computational and statistical efficiency, and note that the approach sets the stage for extensions beyond the purely binary setting. |
---|---|
ISSN: | 1867-1764 1867-1772 |
DOI: | 10.1007/s12561-022-09338-6 |