Loading…
Delocalized Spectra of Landau Operators on Helical Surfaces
On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels re...
Saved in:
Published in: | Communications in mathematical physics 2022-11, Vol.395 (3), p.1211-1242 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693 |
container_end_page | 1242 |
container_issue | 3 |
container_start_page | 1211 |
container_title | Communications in mathematical physics |
container_volume | 395 |
creator | Kubota, Yosuke Ludewig, Matthias Thiang, Guo Chuan |
description | On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level. |
doi_str_mv | 10.1007/s00220-022-04452-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725043877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725043877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19Gbd4srGZ8wMIvRdUjzkBlqU5N2ob_eaAV3bs7hwnfOhYPQOYFLAqCuMgClgItg4FxQzA_QgnBWzobIQ7QAIICZJPIYneS8B4CGSrlA17e-i9Z0u0_vqu3g7ZhMFUO1Nr0zU7UZfDJjTLmKffXou11Bq-2UgrE-n6KjYLrsz359iV7u755Xj3i9eXha3ayxZbUYcSC2lZLRxtIgnGxI45yqPcimbqFWwjFXc-mEcbUIhrXGtES1rHXEWKdkw5boYu4dUnyffB71Pk6pLy81VVQAZ7VShaIzZVPMOfmgh7R7M-lDE9DfI-l5JF1E_4ykeQmxOZQL3L_69Ff9T-oL-Z5pAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725043877</pqid></control><display><type>article</type><title>Delocalized Spectra of Landau Operators on Helical Surfaces</title><source>Springer Link</source><creator>Kubota, Yosuke ; Ludewig, Matthias ; Thiang, Guo Chuan</creator><creatorcontrib>Kubota, Yosuke ; Ludewig, Matthias ; Thiang, Guo Chuan</creatorcontrib><description>On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04452-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Flat surfaces ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2022-11, Vol.395 (3), p.1211-1242</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693</citedby><cites>FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693</cites><orcidid>0000-0003-0268-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kubota, Yosuke</creatorcontrib><creatorcontrib>Ludewig, Matthias</creatorcontrib><creatorcontrib>Thiang, Guo Chuan</creatorcontrib><title>Delocalized Spectra of Landau Operators on Helical Surfaces</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Flat surfaces</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19Gbd4srGZ8wMIvRdUjzkBlqU5N2ob_eaAV3bs7hwnfOhYPQOYFLAqCuMgClgItg4FxQzA_QgnBWzobIQ7QAIICZJPIYneS8B4CGSrlA17e-i9Z0u0_vqu3g7ZhMFUO1Nr0zU7UZfDJjTLmKffXou11Bq-2UgrE-n6KjYLrsz359iV7u755Xj3i9eXha3ayxZbUYcSC2lZLRxtIgnGxI45yqPcimbqFWwjFXc-mEcbUIhrXGtES1rHXEWKdkw5boYu4dUnyffB71Pk6pLy81VVQAZ7VShaIzZVPMOfmgh7R7M-lDE9DfI-l5JF1E_4ykeQmxOZQL3L_69Ff9T-oL-Z5pAQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kubota, Yosuke</creator><creator>Ludewig, Matthias</creator><creator>Thiang, Guo Chuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0268-0065</orcidid></search><sort><creationdate>20221101</creationdate><title>Delocalized Spectra of Landau Operators on Helical Surfaces</title><author>Kubota, Yosuke ; Ludewig, Matthias ; Thiang, Guo Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Flat surfaces</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubota, Yosuke</creatorcontrib><creatorcontrib>Ludewig, Matthias</creatorcontrib><creatorcontrib>Thiang, Guo Chuan</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubota, Yosuke</au><au>Ludewig, Matthias</au><au>Thiang, Guo Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delocalized Spectra of Landau Operators on Helical Surfaces</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>395</volume><issue>3</issue><spage>1211</spage><epage>1242</epage><pages>1211-1242</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04452-4</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-0268-0065</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2022-11, Vol.395 (3), p.1211-1242 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2725043877 |
source | Springer Link |
subjects | Classical and Quantum Gravitation Complex Systems Flat surfaces Manifolds (mathematics) Mathematical and Computational Physics Mathematical Physics Operators (mathematics) Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | Delocalized Spectra of Landau Operators on Helical Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delocalized%20Spectra%20of%20Landau%20Operators%20on%20Helical%20Surfaces&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Kubota,%20Yosuke&rft.date=2022-11-01&rft.volume=395&rft.issue=3&rft.spage=1211&rft.epage=1242&rft.pages=1211-1242&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04452-4&rft_dat=%3Cproquest_cross%3E2725043877%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725043877&rft_id=info:pmid/&rfr_iscdi=true |