Loading…

Delocalized Spectra of Landau Operators on Helical Surfaces

On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels re...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2022-11, Vol.395 (3), p.1211-1242
Main Authors: Kubota, Yosuke, Ludewig, Matthias, Thiang, Guo Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693
cites cdi_FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693
container_end_page 1242
container_issue 3
container_start_page 1211
container_title Communications in mathematical physics
container_volume 395
creator Kubota, Yosuke
Ludewig, Matthias
Thiang, Guo Chuan
description On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level.
doi_str_mv 10.1007/s00220-022-04452-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725043877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725043877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19Gbd4srGZ8wMIvRdUjzkBlqU5N2ob_eaAV3bs7hwnfOhYPQOYFLAqCuMgClgItg4FxQzA_QgnBWzobIQ7QAIICZJPIYneS8B4CGSrlA17e-i9Z0u0_vqu3g7ZhMFUO1Nr0zU7UZfDJjTLmKffXou11Bq-2UgrE-n6KjYLrsz359iV7u755Xj3i9eXha3ayxZbUYcSC2lZLRxtIgnGxI45yqPcimbqFWwjFXc-mEcbUIhrXGtES1rHXEWKdkw5boYu4dUnyffB71Pk6pLy81VVQAZ7VShaIzZVPMOfmgh7R7M-lDE9DfI-l5JF1E_4ykeQmxOZQL3L_69Ff9T-oL-Z5pAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725043877</pqid></control><display><type>article</type><title>Delocalized Spectra of Landau Operators on Helical Surfaces</title><source>Springer Link</source><creator>Kubota, Yosuke ; Ludewig, Matthias ; Thiang, Guo Chuan</creator><creatorcontrib>Kubota, Yosuke ; Ludewig, Matthias ; Thiang, Guo Chuan</creatorcontrib><description>On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-022-04452-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Flat surfaces ; Manifolds (mathematics) ; Mathematical and Computational Physics ; Mathematical Physics ; Operators (mathematics) ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2022-11, Vol.395 (3), p.1211-1242</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693</citedby><cites>FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693</cites><orcidid>0000-0003-0268-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kubota, Yosuke</creatorcontrib><creatorcontrib>Ludewig, Matthias</creatorcontrib><creatorcontrib>Thiang, Guo Chuan</creatorcontrib><title>Delocalized Spectra of Landau Operators on Helical Surfaces</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Flat surfaces</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19Gbd4srGZ8wMIvRdUjzkBlqU5N2ob_eaAV3bs7hwnfOhYPQOYFLAqCuMgClgItg4FxQzA_QgnBWzobIQ7QAIICZJPIYneS8B4CGSrlA17e-i9Z0u0_vqu3g7ZhMFUO1Nr0zU7UZfDJjTLmKffXou11Bq-2UgrE-n6KjYLrsz359iV7u755Xj3i9eXha3ayxZbUYcSC2lZLRxtIgnGxI45yqPcimbqFWwjFXc-mEcbUIhrXGtES1rHXEWKdkw5boYu4dUnyffB71Pk6pLy81VVQAZ7VShaIzZVPMOfmgh7R7M-lDE9DfI-l5JF1E_4ykeQmxOZQL3L_69Ff9T-oL-Z5pAQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Kubota, Yosuke</creator><creator>Ludewig, Matthias</creator><creator>Thiang, Guo Chuan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0268-0065</orcidid></search><sort><creationdate>20221101</creationdate><title>Delocalized Spectra of Landau Operators on Helical Surfaces</title><author>Kubota, Yosuke ; Ludewig, Matthias ; Thiang, Guo Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Flat surfaces</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubota, Yosuke</creatorcontrib><creatorcontrib>Ludewig, Matthias</creatorcontrib><creatorcontrib>Thiang, Guo Chuan</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubota, Yosuke</au><au>Ludewig, Matthias</au><au>Thiang, Guo Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delocalized Spectra of Landau Operators on Helical Surfaces</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>395</volume><issue>3</issue><spage>1211</spage><epage>1242</epage><pages>1211-1242</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>On a flat surface, the Landau operator, or quantum Hall Hamiltonian, has spectrum a discrete set of infinitely-degenerate Landau levels. We consider surfaces with asymptotically constant curvature away from a possibly non-compact submanifold, the helicoid being our main example. The Landau levels remain isolated, provided the spectrum is considered in an appropriate Hilbert module over the Roe algebra of the surface delocalized away from the submanifold. Delocalized coarse indices may then be assigned to them. As an application, we prove that Landau operators on helical surfaces have no spectral gaps above the lowest Landau level.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-022-04452-4</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-0268-0065</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2022-11, Vol.395 (3), p.1211-1242
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2725043877
source Springer Link
subjects Classical and Quantum Gravitation
Complex Systems
Flat surfaces
Manifolds (mathematics)
Mathematical and Computational Physics
Mathematical Physics
Operators (mathematics)
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Delocalized Spectra of Landau Operators on Helical Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delocalized%20Spectra%20of%20Landau%20Operators%20on%20Helical%20Surfaces&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Kubota,%20Yosuke&rft.date=2022-11-01&rft.volume=395&rft.issue=3&rft.spage=1211&rft.epage=1242&rft.pages=1211-1242&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-022-04452-4&rft_dat=%3Cproquest_cross%3E2725043877%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-f1cb66329c2f5d6919dd78e0698b0875d3d846d5ad85fa3baab17b3bd1acd7693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725043877&rft_id=info:pmid/&rfr_iscdi=true