Loading…

Research on Weld Seam Bead Recognition Based on Convolution Neural Network

In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to c...

Full description

Saved in:
Bibliographic Details
Published in:Scientific programming 2022-10, Vol.2022, p.1-7
Main Authors: Shi, Chao, Sun, Hongwei, Liu, Chao, Tang, Zhaojia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3
container_end_page 7
container_issue
container_start_page 1
container_title Scientific programming
container_volume 2022
creator Shi, Chao
Sun, Hongwei
Liu, Chao
Tang, Zhaojia
description In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classification accuracy is compared with the standard model of seven categories of representative CNN. The results show that the ResNet model with a multistage training strategy classifies weld seams with an accuracy of 83.8%, which is superior to other standard models. In this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, fulfilling the intelligent recognition of weld seams in complex scenarios based on the CNN digital model.
doi_str_mv 10.1155/2022/1626384
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725130348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725130348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMisYRQ27FjZ0kjnqpAKpVgF039oClpXOyEir_HpV2zuqO5RzPSQeic4GtCOB9RTOmI5DTPJDtAAyIFTwtSvB_GGXOZFpSxY3QSwhJjIgnGA_Q0NcGAV4vEtcmbaXTyamCVjA3oZGqU-2jrro7VGILRW6Z07bdr-r_ls-k9NDG6jfOfp-jIQhPM2T6HaHZ3Oysf0snL_WN5M0kVLViXsjnnmFmd56BFJnOQWClFaSEKKjDVMFdSWRULJQSXkmXMgpUaDBcabDZEF7uza---ehO6aul638aPFRWUkwxnTEbqakcp70LwxlZrX6_A_1QEV1tZ1VZWtZcV8csdvqhbDZv6f_oXE89ogg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725130348</pqid></control><display><type>article</type><title>Research on Weld Seam Bead Recognition Based on Convolution Neural Network</title><source>Wiley-Blackwell Open Access Collection</source><creator>Shi, Chao ; Sun, Hongwei ; Liu, Chao ; Tang, Zhaojia</creator><contributor>Hussain, Sadiq ; Sadiq Hussain</contributor><creatorcontrib>Shi, Chao ; Sun, Hongwei ; Liu, Chao ; Tang, Zhaojia ; Hussain, Sadiq ; Sadiq Hussain</creatorcontrib><description>In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classification accuracy is compared with the standard model of seven categories of representative CNN. The results show that the ResNet model with a multistage training strategy classifies weld seams with an accuracy of 83.8%, which is superior to other standard models. In this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, fulfilling the intelligent recognition of weld seams in complex scenarios based on the CNN digital model.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2022/1626384</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Back propagation ; Bias ; Localization ; Neural networks ; Recognition ; Robots ; Seams ; Silk ; Training</subject><ispartof>Scientific programming, 2022-10, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Chao Shi et al.</rights><rights>Copyright © 2022 Chao Shi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3</cites><orcidid>0000-0002-3646-0450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Hussain, Sadiq</contributor><contributor>Sadiq Hussain</contributor><creatorcontrib>Shi, Chao</creatorcontrib><creatorcontrib>Sun, Hongwei</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Tang, Zhaojia</creatorcontrib><title>Research on Weld Seam Bead Recognition Based on Convolution Neural Network</title><title>Scientific programming</title><description>In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classification accuracy is compared with the standard model of seven categories of representative CNN. The results show that the ResNet model with a multistage training strategy classifies weld seams with an accuracy of 83.8%, which is superior to other standard models. In this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, fulfilling the intelligent recognition of weld seams in complex scenarios based on the CNN digital model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Bias</subject><subject>Localization</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Robots</subject><subject>Seams</subject><subject>Silk</subject><subject>Training</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4wMisYRQ27FjZ0kjnqpAKpVgF039oClpXOyEir_HpV2zuqO5RzPSQeic4GtCOB9RTOmI5DTPJDtAAyIFTwtSvB_GGXOZFpSxY3QSwhJjIgnGA_Q0NcGAV4vEtcmbaXTyamCVjA3oZGqU-2jrro7VGILRW6Z07bdr-r_ls-k9NDG6jfOfp-jIQhPM2T6HaHZ3Oysf0snL_WN5M0kVLViXsjnnmFmd56BFJnOQWClFaSEKKjDVMFdSWRULJQSXkmXMgpUaDBcabDZEF7uza---ehO6aul638aPFRWUkwxnTEbqakcp70LwxlZrX6_A_1QEV1tZ1VZWtZcV8csdvqhbDZv6f_oXE89ogg</recordid><startdate>20221005</startdate><enddate>20221005</enddate><creator>Shi, Chao</creator><creator>Sun, Hongwei</creator><creator>Liu, Chao</creator><creator>Tang, Zhaojia</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3646-0450</orcidid></search><sort><creationdate>20221005</creationdate><title>Research on Weld Seam Bead Recognition Based on Convolution Neural Network</title><author>Shi, Chao ; Sun, Hongwei ; Liu, Chao ; Tang, Zhaojia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Bias</topic><topic>Localization</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Robots</topic><topic>Seams</topic><topic>Silk</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Chao</creatorcontrib><creatorcontrib>Sun, Hongwei</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Tang, Zhaojia</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Chao</au><au>Sun, Hongwei</au><au>Liu, Chao</au><au>Tang, Zhaojia</au><au>Hussain, Sadiq</au><au>Sadiq Hussain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Weld Seam Bead Recognition Based on Convolution Neural Network</atitle><jtitle>Scientific programming</jtitle><date>2022-10-05</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classification accuracy is compared with the standard model of seven categories of representative CNN. The results show that the ResNet model with a multistage training strategy classifies weld seams with an accuracy of 83.8%, which is superior to other standard models. In this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, fulfilling the intelligent recognition of weld seams in complex scenarios based on the CNN digital model.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1626384</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3646-0450</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2022-10, Vol.2022, p.1-7
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2725130348
source Wiley-Blackwell Open Access Collection
subjects Accuracy
Algorithms
Artificial neural networks
Back propagation
Bias
Localization
Neural networks
Recognition
Robots
Seams
Silk
Training
title Research on Weld Seam Bead Recognition Based on Convolution Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Weld%20Seam%20Bead%20Recognition%20Based%20on%20Convolution%20Neural%20Network&rft.jtitle=Scientific%20programming&rft.au=Shi,%20Chao&rft.date=2022-10-05&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2022/1626384&rft_dat=%3Cproquest_cross%3E2725130348%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725130348&rft_id=info:pmid/&rfr_iscdi=true