Loading…
Research on Weld Seam Bead Recognition Based on Convolution Neural Network
In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to c...
Saved in:
Published in: | Scientific programming 2022-10, Vol.2022, p.1-7 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3 |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2022 |
creator | Shi, Chao Sun, Hongwei Liu, Chao Tang, Zhaojia |
description | In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classification accuracy is compared with the standard model of seven categories of representative CNN. The results show that the ResNet model with a multistage training strategy classifies weld seams with an accuracy of 83.8%, which is superior to other standard models. In this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, fulfilling the intelligent recognition of weld seams in complex scenarios based on the CNN digital model. |
doi_str_mv | 10.1155/2022/1626384 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2725130348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725130348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4wMisYRQ27FjZ0kjnqpAKpVgF039oClpXOyEir_HpV2zuqO5RzPSQeic4GtCOB9RTOmI5DTPJDtAAyIFTwtSvB_GGXOZFpSxY3QSwhJjIgnGA_Q0NcGAV4vEtcmbaXTyamCVjA3oZGqU-2jrro7VGILRW6Z07bdr-r_ls-k9NDG6jfOfp-jIQhPM2T6HaHZ3Oysf0snL_WN5M0kVLViXsjnnmFmd56BFJnOQWClFaSEKKjDVMFdSWRULJQSXkmXMgpUaDBcabDZEF7uza---ehO6aul638aPFRWUkwxnTEbqakcp70LwxlZrX6_A_1QEV1tZ1VZWtZcV8csdvqhbDZv6f_oXE89ogg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725130348</pqid></control><display><type>article</type><title>Research on Weld Seam Bead Recognition Based on Convolution Neural Network</title><source>Wiley-Blackwell Open Access Collection</source><creator>Shi, Chao ; Sun, Hongwei ; Liu, Chao ; Tang, Zhaojia</creator><contributor>Hussain, Sadiq ; Sadiq Hussain</contributor><creatorcontrib>Shi, Chao ; Sun, Hongwei ; Liu, Chao ; Tang, Zhaojia ; Hussain, Sadiq ; Sadiq Hussain</creatorcontrib><description>In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classification accuracy is compared with the standard model of seven categories of representative CNN. The results show that the ResNet model with a multistage training strategy classifies weld seams with an accuracy of 83.8%, which is superior to other standard models. In this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, fulfilling the intelligent recognition of weld seams in complex scenarios based on the CNN digital model.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2022/1626384</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Back propagation ; Bias ; Localization ; Neural networks ; Recognition ; Robots ; Seams ; Silk ; Training</subject><ispartof>Scientific programming, 2022-10, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Chao Shi et al.</rights><rights>Copyright © 2022 Chao Shi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3</cites><orcidid>0000-0002-3646-0450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Hussain, Sadiq</contributor><contributor>Sadiq Hussain</contributor><creatorcontrib>Shi, Chao</creatorcontrib><creatorcontrib>Sun, Hongwei</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Tang, Zhaojia</creatorcontrib><title>Research on Weld Seam Bead Recognition Based on Convolution Neural Network</title><title>Scientific programming</title><description>In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classification accuracy is compared with the standard model of seven categories of representative CNN. The results show that the ResNet model with a multistage training strategy classifies weld seams with an accuracy of 83.8%, which is superior to other standard models. In this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, fulfilling the intelligent recognition of weld seams in complex scenarios based on the CNN digital model.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Bias</subject><subject>Localization</subject><subject>Neural networks</subject><subject>Recognition</subject><subject>Robots</subject><subject>Seams</subject><subject>Silk</subject><subject>Training</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4wMisYRQ27FjZ0kjnqpAKpVgF039oClpXOyEir_HpV2zuqO5RzPSQeic4GtCOB9RTOmI5DTPJDtAAyIFTwtSvB_GGXOZFpSxY3QSwhJjIgnGA_Q0NcGAV4vEtcmbaXTyamCVjA3oZGqU-2jrro7VGILRW6Z07bdr-r_ls-k9NDG6jfOfp-jIQhPM2T6HaHZ3Oysf0snL_WN5M0kVLViXsjnnmFmd56BFJnOQWClFaSEKKjDVMFdSWRULJQSXkmXMgpUaDBcabDZEF7uza---ehO6aul638aPFRWUkwxnTEbqakcp70LwxlZrX6_A_1QEV1tZ1VZWtZcV8csdvqhbDZv6f_oXE89ogg</recordid><startdate>20221005</startdate><enddate>20221005</enddate><creator>Shi, Chao</creator><creator>Sun, Hongwei</creator><creator>Liu, Chao</creator><creator>Tang, Zhaojia</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3646-0450</orcidid></search><sort><creationdate>20221005</creationdate><title>Research on Weld Seam Bead Recognition Based on Convolution Neural Network</title><author>Shi, Chao ; Sun, Hongwei ; Liu, Chao ; Tang, Zhaojia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Bias</topic><topic>Localization</topic><topic>Neural networks</topic><topic>Recognition</topic><topic>Robots</topic><topic>Seams</topic><topic>Silk</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Chao</creatorcontrib><creatorcontrib>Sun, Hongwei</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Tang, Zhaojia</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Chao</au><au>Sun, Hongwei</au><au>Liu, Chao</au><au>Tang, Zhaojia</au><au>Hussain, Sadiq</au><au>Sadiq Hussain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Weld Seam Bead Recognition Based on Convolution Neural Network</atitle><jtitle>Scientific programming</jtitle><date>2022-10-05</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>In terms of the problems of five categories of nonweld seam stripes, including inclusion, oil-spot, silk-spot, and water-spot, which interfere with weld seam recognition during robotic welding, a convolutional neural network (CNN) algorithm, combined with a multistage training strategy, is used to construct a digital model for weld seam recognition, on the basis of which the classification accuracy is compared with the standard model of seven categories of representative CNN. The results show that the ResNet model with a multistage training strategy classifies weld seams with an accuracy of 83.8%, which is superior to other standard models. In this study, the physical scenario of weld seam recognition is migrated to a neural network digital model, fulfilling the intelligent recognition of weld seams in complex scenarios based on the CNN digital model.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1626384</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3646-0450</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2022-10, Vol.2022, p.1-7 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2725130348 |
source | Wiley-Blackwell Open Access Collection |
subjects | Accuracy Algorithms Artificial neural networks Back propagation Bias Localization Neural networks Recognition Robots Seams Silk Training |
title | Research on Weld Seam Bead Recognition Based on Convolution Neural Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Weld%20Seam%20Bead%20Recognition%20Based%20on%20Convolution%20Neural%20Network&rft.jtitle=Scientific%20programming&rft.au=Shi,%20Chao&rft.date=2022-10-05&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2022/1626384&rft_dat=%3Cproquest_cross%3E2725130348%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-4b5504fd66ad7386a80ccc229792702dabc8cfc86ac77588434faf8dae57daf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725130348&rft_id=info:pmid/&rfr_iscdi=true |