Loading…
The topology of compact rank-one ECS manifolds
Pseudo-Riemannian manifolds with parallel Weyl tensor that are not conformally flat or locally symmetric, also known as ECS manifolds, have a natural local invariant, the rank, which equals 1 or 2, and is the dimension of a certain distinguished null parallel distribution \(\,\mathcal{D}\). All know...
Saved in:
Published in: | arXiv.org 2023-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Derdzinski, Andrzej Terek, Ivo |
description | Pseudo-Riemannian manifolds with parallel Weyl tensor that are not conformally flat or locally symmetric, also known as ECS manifolds, have a natural local invariant, the rank, which equals 1 or 2, and is the dimension of a certain distinguished null parallel distribution \(\,\mathcal{D}\). All known examples of compact ECS manifolds are of rank one and have dimensions greater than 4. We prove that a compact rank-one ECS manifold, if not locally homogeneous, replaced when necessary by a two-fold isometric covering, must be a bundle over the circle with leaves of \(\,\mathcal{D}^\perp\) serving as the fibres. The same conclusion holds in the locally-homogeneous case if one assumes that \(\,\mathcal{D}^\perp\) has at least one compact leaf. We also show that in the pseudo-Riemannian universal covering space of any compact rank-one ECS manifold the leaves of \(\,\mathcal{D}^\perp\) are the factor manifolds of a global product decomposition. |
doi_str_mv | 10.48550/arxiv.2210.09195 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2725728961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725728961</sourcerecordid><originalsourceid>FETCH-LOGICAL-a955-fce9fc7fe843ea2891183390e2765116833f48fa60b3b863ffc0a756515abd3e3</originalsourceid><addsrcrecordid>eNotjk1LAzEYhIMgtNT-AG8Bz1mTvJuvoyz1Awoe3Ht5N01q63azbrai_96AnoaZgWeGkFvBq9oqxe9x-j5-VVKWgDvh1BVZSgDBbC3lgqxzPnHOpTZSKViSqn0PdE5j6tPhh6ZIfTqP6Gc64fDB0hDopnmjZxyOMfX7fEOuI_Y5rP91RdrHTds8s-3r00vzsGXolGLRBxe9icHWEFBaJ4QFcDxIo5UQuphY24iad9BZDTF6jkaVTmG3hwArcveHHaf0eQl53p3SZRrK4k6W46YgtYBfB-NDQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725728961</pqid></control><display><type>article</type><title>The topology of compact rank-one ECS manifolds</title><source>Publicly Available Content Database</source><creator>Derdzinski, Andrzej ; Terek, Ivo</creator><creatorcontrib>Derdzinski, Andrzej ; Terek, Ivo</creatorcontrib><description>Pseudo-Riemannian manifolds with parallel Weyl tensor that are not conformally flat or locally symmetric, also known as ECS manifolds, have a natural local invariant, the rank, which equals 1 or 2, and is the dimension of a certain distinguished null parallel distribution \(\,\mathcal{D}\). All known examples of compact ECS manifolds are of rank one and have dimensions greater than 4. We prove that a compact rank-one ECS manifold, if not locally homogeneous, replaced when necessary by a two-fold isometric covering, must be a bundle over the circle with leaves of \(\,\mathcal{D}^\perp\) serving as the fibres. The same conclusion holds in the locally-homogeneous case if one assumes that \(\,\mathcal{D}^\perp\) has at least one compact leaf. We also show that in the pseudo-Riemannian universal covering space of any compact rank-one ECS manifold the leaves of \(\,\mathcal{D}^\perp\) are the factor manifolds of a global product decomposition.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2210.09195</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds (mathematics) ; Riemann manifold ; Tensors ; Topology</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2725728961?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Derdzinski, Andrzej</creatorcontrib><creatorcontrib>Terek, Ivo</creatorcontrib><title>The topology of compact rank-one ECS manifolds</title><title>arXiv.org</title><description>Pseudo-Riemannian manifolds with parallel Weyl tensor that are not conformally flat or locally symmetric, also known as ECS manifolds, have a natural local invariant, the rank, which equals 1 or 2, and is the dimension of a certain distinguished null parallel distribution \(\,\mathcal{D}\). All known examples of compact ECS manifolds are of rank one and have dimensions greater than 4. We prove that a compact rank-one ECS manifold, if not locally homogeneous, replaced when necessary by a two-fold isometric covering, must be a bundle over the circle with leaves of \(\,\mathcal{D}^\perp\) serving as the fibres. The same conclusion holds in the locally-homogeneous case if one assumes that \(\,\mathcal{D}^\perp\) has at least one compact leaf. We also show that in the pseudo-Riemannian universal covering space of any compact rank-one ECS manifold the leaves of \(\,\mathcal{D}^\perp\) are the factor manifolds of a global product decomposition.</description><subject>Manifolds (mathematics)</subject><subject>Riemann manifold</subject><subject>Tensors</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEYhIMgtNT-AG8Bz1mTvJuvoyz1Awoe3Ht5N01q63azbrai_96AnoaZgWeGkFvBq9oqxe9x-j5-VVKWgDvh1BVZSgDBbC3lgqxzPnHOpTZSKViSqn0PdE5j6tPhh6ZIfTqP6Gc64fDB0hDopnmjZxyOMfX7fEOuI_Y5rP91RdrHTds8s-3r00vzsGXolGLRBxe9icHWEFBaJ4QFcDxIo5UQuphY24iad9BZDTF6jkaVTmG3hwArcveHHaf0eQl53p3SZRrK4k6W46YgtYBfB-NDQQ</recordid><startdate>20230608</startdate><enddate>20230608</enddate><creator>Derdzinski, Andrzej</creator><creator>Terek, Ivo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230608</creationdate><title>The topology of compact rank-one ECS manifolds</title><author>Derdzinski, Andrzej ; Terek, Ivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a955-fce9fc7fe843ea2891183390e2765116833f48fa60b3b863ffc0a756515abd3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Manifolds (mathematics)</topic><topic>Riemann manifold</topic><topic>Tensors</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Derdzinski, Andrzej</creatorcontrib><creatorcontrib>Terek, Ivo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derdzinski, Andrzej</au><au>Terek, Ivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The topology of compact rank-one ECS manifolds</atitle><jtitle>arXiv.org</jtitle><date>2023-06-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Pseudo-Riemannian manifolds with parallel Weyl tensor that are not conformally flat or locally symmetric, also known as ECS manifolds, have a natural local invariant, the rank, which equals 1 or 2, and is the dimension of a certain distinguished null parallel distribution \(\,\mathcal{D}\). All known examples of compact ECS manifolds are of rank one and have dimensions greater than 4. We prove that a compact rank-one ECS manifold, if not locally homogeneous, replaced when necessary by a two-fold isometric covering, must be a bundle over the circle with leaves of \(\,\mathcal{D}^\perp\) serving as the fibres. The same conclusion holds in the locally-homogeneous case if one assumes that \(\,\mathcal{D}^\perp\) has at least one compact leaf. We also show that in the pseudo-Riemannian universal covering space of any compact rank-one ECS manifold the leaves of \(\,\mathcal{D}^\perp\) are the factor manifolds of a global product decomposition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2210.09195</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2725728961 |
source | Publicly Available Content Database |
subjects | Manifolds (mathematics) Riemann manifold Tensors Topology |
title | The topology of compact rank-one ECS manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20topology%20of%20compact%20rank-one%20ECS%20manifolds&rft.jtitle=arXiv.org&rft.au=Derdzinski,%20Andrzej&rft.date=2023-06-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2210.09195&rft_dat=%3Cproquest%3E2725728961%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a955-fce9fc7fe843ea2891183390e2765116833f48fa60b3b863ffc0a756515abd3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2725728961&rft_id=info:pmid/&rfr_iscdi=true |