Loading…
A ''New Ara'' for Vector Computing: An Open Source Highly Efficient RISC-V V 1.0 Vector Processor Design
Vector architectures are gaining traction for highly efficient processing of data-parallel workloads, driven by all major ISAs (RISC-V, Arm, Intel), and boosted by landmark chips, like the Arm SVE-based Fujitsu A64FX, powering the TOP500 leader Fugaku. The RISC-V V extension has recently reached 1.0...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vector architectures are gaining traction for highly efficient processing of data-parallel workloads, driven by all major ISAs (RISC-V, Arm, Intel), and boosted by landmark chips, like the Arm SVE-based Fujitsu A64FX, powering the TOP500 leader Fugaku. The RISC-V V extension has recently reached 1.0-Frozen status. Here, we present its first open-source implementation, discuss the new specification's impact on the micro-architecture of a lane-based design, and provide insights on performance-oriented design of coupled scalar-vector processors. Our system achieves comparable/better PPA than state-of-the-art vector engines that implement older RVV versions: 15% better area, 6% improved throughput, and FPU utilization >98.5% on crucial kernels. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2210.08882 |