Loading…

Restoration of Lung Sound Signals Using a Hybrid Wavelet-Based Approach

A unique and ideal integration of wavelet-based total variation (WATV) and empirical Wiener denoising method is proposed in this article to significantly enhance the signal-to-noise ratio (SNR) while preserving the characteristics of a lung sound signal. While individual wavelet-based denoising filt...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2022-10, Vol.22 (20), p.19700-19712
Main Authors: Lee, Chang Sheng, Li, Minghui, Lou, Yaolong, Dahiya, Ravinder
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-bde5a58ce040fe23b380c04ce150deb902c35a3645f3d41b291ad12baecc31c83
cites cdi_FETCH-LOGICAL-c336t-bde5a58ce040fe23b380c04ce150deb902c35a3645f3d41b291ad12baecc31c83
container_end_page 19712
container_issue 20
container_start_page 19700
container_title IEEE sensors journal
container_volume 22
creator Lee, Chang Sheng
Li, Minghui
Lou, Yaolong
Dahiya, Ravinder
description A unique and ideal integration of wavelet-based total variation (WATV) and empirical Wiener denoising method is proposed in this article to significantly enhance the signal-to-noise ratio (SNR) while preserving the characteristics of a lung sound signal. While individual wavelet-based denoising filters based on a single basis function have been employed in the past, the outcome has been unsatisfactory because only significant (signal) wavelet coefficients are considered for denoising analysis. The new wavelet-based empirical Wiener (WATV-Wiener) hybrid technique, proposed here, takes into account both significant and insignificant (noise) wavelet coefficients of the noisy signal. An intensive analysis of selecting and fine-tuning the WATV-Wiener filter parameters is presented here through the simulation studies. The WATV-Wiener filter applied here onto different 1-D lung sound signals of different noise levels has led to an optimal root mean square error (RMSE) compared with seven other state-of-the-art filters reported in the literature. The optimal parameters achieved through our simulation studies led to a 3-20-dB improvement in SNR, and the average SNR was improved by 4-30 dB in our experiment. We also observed that the WATV-Wiener filter is less sensitive to the variation of SNR values of the input signal. Furthermore, the WATV-Wiener filter obtains similar SNR performance between continuous piecewise signal (wheeze) and noncontinuous piecewise signal (crackle) in both simulation and experimental studies.
doi_str_mv 10.1109/JSEN.2022.3203391
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726106989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9881964</ieee_id><sourcerecordid>2726106989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-bde5a58ce040fe23b380c04ce150deb902c35a3645f3d41b291ad12baecc31c83</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPgS8Lkzl2va5HGO_VCGgnPoW0jTdHbMdiatsP_elg2f7jg-d_flQ8gtsBEAUw_Pq-nLiDPOR8gZooIzMgAhZARpLM_7HlkUY_p5Sa5C2DIGKhXpgMzfXGhqb5qyrmhd0GVbbeiqbqucrspNZXaBrkPZzQxdHDJf5vTD_Lqda6JHE1xOx_u9r439uiYXRQe7m1MdkvVs-j5ZRMvX-dNkvIwsYtJEWe6EEdI6FrPCccxQMsti60Cw3GWKcYvCYBKLAvMYMq7A5MAz46xFsBKH5P54t3v703bZ9bZufZ9T85QnwBIlVUfBkbK-DsG7Qu99-W38QQPTvS_d-9K9L33y1e3cHXdK59w_r6QElcT4B51vZh0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726106989</pqid></control><display><type>article</type><title>Restoration of Lung Sound Signals Using a Hybrid Wavelet-Based Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Chang Sheng ; Li, Minghui ; Lou, Yaolong ; Dahiya, Ravinder</creator><creatorcontrib>Lee, Chang Sheng ; Li, Minghui ; Lou, Yaolong ; Dahiya, Ravinder</creatorcontrib><description>A unique and ideal integration of wavelet-based total variation (WATV) and empirical Wiener denoising method is proposed in this article to significantly enhance the signal-to-noise ratio (SNR) while preserving the characteristics of a lung sound signal. While individual wavelet-based denoising filters based on a single basis function have been employed in the past, the outcome has been unsatisfactory because only significant (signal) wavelet coefficients are considered for denoising analysis. The new wavelet-based empirical Wiener (WATV-Wiener) hybrid technique, proposed here, takes into account both significant and insignificant (noise) wavelet coefficients of the noisy signal. An intensive analysis of selecting and fine-tuning the WATV-Wiener filter parameters is presented here through the simulation studies. The WATV-Wiener filter applied here onto different 1-D lung sound signals of different noise levels has led to an optimal root mean square error (RMSE) compared with seven other state-of-the-art filters reported in the literature. The optimal parameters achieved through our simulation studies led to a 3-20-dB improvement in SNR, and the average SNR was improved by 4-30 dB in our experiment. We also observed that the WATV-Wiener filter is less sensitive to the variation of SNR values of the input signal. Furthermore, the WATV-Wiener filter obtains similar SNR performance between continuous piecewise signal (wheeze) and noncontinuous piecewise signal (crackle) in both simulation and experimental studies.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3203391</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Band-pass filters ; Basis functions ; Denoising ; Electromagnetic wave filters ; Empirical analysis ; Finite impulse response filters ; Lung ; lung sound signal ; Lungs ; Noise levels ; Noise measurement ; Noise reduction ; Parameters ; Root-mean-square errors ; Sensors ; signal estimation ; Signal to noise ratio ; signal-to-noise ratio (SNR) ; Simulation ; Sound ; Sound filters ; Wavelet analysis ; wavelets ; Wiener filter ; Wiener filtering ; Wiener filters</subject><ispartof>IEEE sensors journal, 2022-10, Vol.22 (20), p.19700-19712</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-bde5a58ce040fe23b380c04ce150deb902c35a3645f3d41b291ad12baecc31c83</citedby><cites>FETCH-LOGICAL-c336t-bde5a58ce040fe23b380c04ce150deb902c35a3645f3d41b291ad12baecc31c83</cites><orcidid>0000-0002-8151-3101 ; 0000-0002-3858-3841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9881964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Lee, Chang Sheng</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Lou, Yaolong</creatorcontrib><creatorcontrib>Dahiya, Ravinder</creatorcontrib><title>Restoration of Lung Sound Signals Using a Hybrid Wavelet-Based Approach</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A unique and ideal integration of wavelet-based total variation (WATV) and empirical Wiener denoising method is proposed in this article to significantly enhance the signal-to-noise ratio (SNR) while preserving the characteristics of a lung sound signal. While individual wavelet-based denoising filters based on a single basis function have been employed in the past, the outcome has been unsatisfactory because only significant (signal) wavelet coefficients are considered for denoising analysis. The new wavelet-based empirical Wiener (WATV-Wiener) hybrid technique, proposed here, takes into account both significant and insignificant (noise) wavelet coefficients of the noisy signal. An intensive analysis of selecting and fine-tuning the WATV-Wiener filter parameters is presented here through the simulation studies. The WATV-Wiener filter applied here onto different 1-D lung sound signals of different noise levels has led to an optimal root mean square error (RMSE) compared with seven other state-of-the-art filters reported in the literature. The optimal parameters achieved through our simulation studies led to a 3-20-dB improvement in SNR, and the average SNR was improved by 4-30 dB in our experiment. We also observed that the WATV-Wiener filter is less sensitive to the variation of SNR values of the input signal. Furthermore, the WATV-Wiener filter obtains similar SNR performance between continuous piecewise signal (wheeze) and noncontinuous piecewise signal (crackle) in both simulation and experimental studies.</description><subject>Band-pass filters</subject><subject>Basis functions</subject><subject>Denoising</subject><subject>Electromagnetic wave filters</subject><subject>Empirical analysis</subject><subject>Finite impulse response filters</subject><subject>Lung</subject><subject>lung sound signal</subject><subject>Lungs</subject><subject>Noise levels</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>signal estimation</subject><subject>Signal to noise ratio</subject><subject>signal-to-noise ratio (SNR)</subject><subject>Simulation</subject><subject>Sound</subject><subject>Sound filters</subject><subject>Wavelet analysis</subject><subject>wavelets</subject><subject>Wiener filter</subject><subject>Wiener filtering</subject><subject>Wiener filters</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN9LwzAQx4MoOKd_gPgS8Lkzl2va5HGO_VCGgnPoW0jTdHbMdiatsP_elg2f7jg-d_flQ8gtsBEAUw_Pq-nLiDPOR8gZooIzMgAhZARpLM_7HlkUY_p5Sa5C2DIGKhXpgMzfXGhqb5qyrmhd0GVbbeiqbqucrspNZXaBrkPZzQxdHDJf5vTD_Lqda6JHE1xOx_u9r439uiYXRQe7m1MdkvVs-j5ZRMvX-dNkvIwsYtJEWe6EEdI6FrPCccxQMsti60Cw3GWKcYvCYBKLAvMYMq7A5MAz46xFsBKH5P54t3v703bZ9bZufZ9T85QnwBIlVUfBkbK-DsG7Qu99-W38QQPTvS_d-9K9L33y1e3cHXdK59w_r6QElcT4B51vZh0</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Lee, Chang Sheng</creator><creator>Li, Minghui</creator><creator>Lou, Yaolong</creator><creator>Dahiya, Ravinder</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8151-3101</orcidid><orcidid>https://orcid.org/0000-0002-3858-3841</orcidid></search><sort><creationdate>20221015</creationdate><title>Restoration of Lung Sound Signals Using a Hybrid Wavelet-Based Approach</title><author>Lee, Chang Sheng ; Li, Minghui ; Lou, Yaolong ; Dahiya, Ravinder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-bde5a58ce040fe23b380c04ce150deb902c35a3645f3d41b291ad12baecc31c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Band-pass filters</topic><topic>Basis functions</topic><topic>Denoising</topic><topic>Electromagnetic wave filters</topic><topic>Empirical analysis</topic><topic>Finite impulse response filters</topic><topic>Lung</topic><topic>lung sound signal</topic><topic>Lungs</topic><topic>Noise levels</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>signal estimation</topic><topic>Signal to noise ratio</topic><topic>signal-to-noise ratio (SNR)</topic><topic>Simulation</topic><topic>Sound</topic><topic>Sound filters</topic><topic>Wavelet analysis</topic><topic>wavelets</topic><topic>Wiener filter</topic><topic>Wiener filtering</topic><topic>Wiener filters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Chang Sheng</creatorcontrib><creatorcontrib>Li, Minghui</creatorcontrib><creatorcontrib>Lou, Yaolong</creatorcontrib><creatorcontrib>Dahiya, Ravinder</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Chang Sheng</au><au>Li, Minghui</au><au>Lou, Yaolong</au><au>Dahiya, Ravinder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restoration of Lung Sound Signals Using a Hybrid Wavelet-Based Approach</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-10-15</date><risdate>2022</risdate><volume>22</volume><issue>20</issue><spage>19700</spage><epage>19712</epage><pages>19700-19712</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A unique and ideal integration of wavelet-based total variation (WATV) and empirical Wiener denoising method is proposed in this article to significantly enhance the signal-to-noise ratio (SNR) while preserving the characteristics of a lung sound signal. While individual wavelet-based denoising filters based on a single basis function have been employed in the past, the outcome has been unsatisfactory because only significant (signal) wavelet coefficients are considered for denoising analysis. The new wavelet-based empirical Wiener (WATV-Wiener) hybrid technique, proposed here, takes into account both significant and insignificant (noise) wavelet coefficients of the noisy signal. An intensive analysis of selecting and fine-tuning the WATV-Wiener filter parameters is presented here through the simulation studies. The WATV-Wiener filter applied here onto different 1-D lung sound signals of different noise levels has led to an optimal root mean square error (RMSE) compared with seven other state-of-the-art filters reported in the literature. The optimal parameters achieved through our simulation studies led to a 3-20-dB improvement in SNR, and the average SNR was improved by 4-30 dB in our experiment. We also observed that the WATV-Wiener filter is less sensitive to the variation of SNR values of the input signal. Furthermore, the WATV-Wiener filter obtains similar SNR performance between continuous piecewise signal (wheeze) and noncontinuous piecewise signal (crackle) in both simulation and experimental studies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3203391</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8151-3101</orcidid><orcidid>https://orcid.org/0000-0002-3858-3841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-10, Vol.22 (20), p.19700-19712
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2726106989
source IEEE Electronic Library (IEL) Journals
subjects Band-pass filters
Basis functions
Denoising
Electromagnetic wave filters
Empirical analysis
Finite impulse response filters
Lung
lung sound signal
Lungs
Noise levels
Noise measurement
Noise reduction
Parameters
Root-mean-square errors
Sensors
signal estimation
Signal to noise ratio
signal-to-noise ratio (SNR)
Simulation
Sound
Sound filters
Wavelet analysis
wavelets
Wiener filter
Wiener filtering
Wiener filters
title Restoration of Lung Sound Signals Using a Hybrid Wavelet-Based Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restoration%20of%20Lung%20Sound%20Signals%20Using%20a%20Hybrid%20Wavelet-Based%20Approach&rft.jtitle=IEEE%20sensors%20journal&rft.au=Lee,%20Chang%20Sheng&rft.date=2022-10-15&rft.volume=22&rft.issue=20&rft.spage=19700&rft.epage=19712&rft.pages=19700-19712&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3203391&rft_dat=%3Cproquest_cross%3E2726106989%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-bde5a58ce040fe23b380c04ce150deb902c35a3645f3d41b291ad12baecc31c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726106989&rft_id=info:pmid/&rft_ieee_id=9881964&rfr_iscdi=true