Loading…
EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle
In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently,...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hao, Yuying Liu, Yi Chen, Yizhou Lin, Han Peng, Juncai Tang, Shiyu Chen, Guowei Wu, Zewu Chen, Zeyu Lai, Baohua |
description | In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2726155786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726155786</sourcerecordid><originalsourceid>FETCH-proquest_journals_27261557863</originalsourceid><addsrcrecordid>eNqNisEKgkAURYcgSMp_eNBa0DeOSrsIK3dB7mXSZ4zYTDlj399AfUCbe7nn3AULkPMkKlLEFQutHeI4xixHIXjATmV1pfsO9hrKvletIu2g0o4m2Tr1JvD24Zl0ymiojRnhJi114NdFdt1I39ywZS9HS-Gv12x7LOvDOXpO5jWTdc1g5kl71WCOWSJEXmT8v9cHeko6yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726155786</pqid></control><display><type>article</type><title>EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hao, Yuying ; Liu, Yi ; Chen, Yizhou ; Lin, Han ; Peng, Juncai ; Tang, Shiyu ; Chen, Guowei ; Wu, Zewu ; Chen, Zeyu ; Lai, Baohua</creator><creatorcontrib>Hao, Yuying ; Liu, Yi ; Chen, Yizhou ; Lin, Han ; Peng, Juncai ; Tang, Shiyu ; Chen, Guowei ; Wu, Zewu ; Chen, Zeyu ; Lai, Baohua</creatorcontrib><description>In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Image quality ; Image segmentation ; Machine learning ; Medical imaging ; Neural networks ; Remote sensing ; Source code</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2726155786?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Hao, Yuying</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Yizhou</creatorcontrib><creatorcontrib>Lin, Han</creatorcontrib><creatorcontrib>Peng, Juncai</creatorcontrib><creatorcontrib>Tang, Shiyu</creatorcontrib><creatorcontrib>Chen, Guowei</creatorcontrib><creatorcontrib>Wu, Zewu</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><creatorcontrib>Lai, Baohua</creatorcontrib><title>EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle</title><title>arXiv.org</title><description>In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNisEKgkAURYcgSMp_eNBa0DeOSrsIK3dB7mXSZ4zYTDlj399AfUCbe7nn3AULkPMkKlLEFQutHeI4xixHIXjATmV1pfsO9hrKvletIu2g0o4m2Tr1JvD24Zl0ymiojRnhJi114NdFdt1I39ywZS9HS-Gv12x7LOvDOXpO5jWTdc1g5kl71WCOWSJEXmT8v9cHeko6yw</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Hao, Yuying</creator><creator>Liu, Yi</creator><creator>Chen, Yizhou</creator><creator>Lin, Han</creator><creator>Peng, Juncai</creator><creator>Tang, Shiyu</creator><creator>Chen, Guowei</creator><creator>Wu, Zewu</creator><creator>Chen, Zeyu</creator><creator>Lai, Baohua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221018</creationdate><title>EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle</title><author>Hao, Yuying ; Liu, Yi ; Chen, Yizhou ; Lin, Han ; Peng, Juncai ; Tang, Shiyu ; Chen, Guowei ; Wu, Zewu ; Chen, Zeyu ; Lai, Baohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27261557863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yuying</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Yizhou</creatorcontrib><creatorcontrib>Lin, Han</creatorcontrib><creatorcontrib>Peng, Juncai</creatorcontrib><creatorcontrib>Tang, Shiyu</creatorcontrib><creatorcontrib>Chen, Guowei</creatorcontrib><creatorcontrib>Wu, Zewu</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><creatorcontrib>Lai, Baohua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yuying</au><au>Liu, Yi</au><au>Chen, Yizhou</au><au>Lin, Han</au><au>Peng, Juncai</au><au>Tang, Shiyu</au><au>Chen, Guowei</au><au>Wu, Zewu</au><au>Chen, Zeyu</au><au>Lai, Baohua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle</atitle><jtitle>arXiv.org</jtitle><date>2022-10-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2726155786 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Annotations Image quality Image segmentation Machine learning Medical imaging Neural networks Remote sensing Source code |
title | EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EISeg:%20An%20Efficient%20Interactive%20Segmentation%20Tool%20based%20on%20PaddlePaddle&rft.jtitle=arXiv.org&rft.au=Hao,%20Yuying&rft.date=2022-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2726155786%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27261557863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726155786&rft_id=info:pmid/&rfr_iscdi=true |