Loading…

EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle

In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-10
Main Authors: Hao, Yuying, Liu, Yi, Chen, Yizhou, Lin, Han, Peng, Juncai, Tang, Shiyu, Chen, Guowei, Wu, Zewu, Chen, Zeyu, Lai, Baohua
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hao, Yuying
Liu, Yi
Chen, Yizhou
Lin, Han
Peng, Juncai
Tang, Shiyu
Chen, Guowei
Wu, Zewu
Chen, Zeyu
Lai, Baohua
description In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2726155786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726155786</sourcerecordid><originalsourceid>FETCH-proquest_journals_27261557863</originalsourceid><addsrcrecordid>eNqNisEKgkAURYcgSMp_eNBa0DeOSrsIK3dB7mXSZ4zYTDlj399AfUCbe7nn3AULkPMkKlLEFQutHeI4xixHIXjATmV1pfsO9hrKvletIu2g0o4m2Tr1JvD24Zl0ymiojRnhJi114NdFdt1I39ywZS9HS-Gv12x7LOvDOXpO5jWTdc1g5kl71WCOWSJEXmT8v9cHeko6yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726155786</pqid></control><display><type>article</type><title>EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hao, Yuying ; Liu, Yi ; Chen, Yizhou ; Lin, Han ; Peng, Juncai ; Tang, Shiyu ; Chen, Guowei ; Wu, Zewu ; Chen, Zeyu ; Lai, Baohua</creator><creatorcontrib>Hao, Yuying ; Liu, Yi ; Chen, Yizhou ; Lin, Han ; Peng, Juncai ; Tang, Shiyu ; Chen, Guowei ; Wu, Zewu ; Chen, Zeyu ; Lai, Baohua</creatorcontrib><description>In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Annotations ; Image quality ; Image segmentation ; Machine learning ; Medical imaging ; Neural networks ; Remote sensing ; Source code</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2726155786?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Hao, Yuying</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Yizhou</creatorcontrib><creatorcontrib>Lin, Han</creatorcontrib><creatorcontrib>Peng, Juncai</creatorcontrib><creatorcontrib>Tang, Shiyu</creatorcontrib><creatorcontrib>Chen, Guowei</creatorcontrib><creatorcontrib>Wu, Zewu</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><creatorcontrib>Lai, Baohua</creatorcontrib><title>EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle</title><title>arXiv.org</title><description>In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Source code</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNisEKgkAURYcgSMp_eNBa0DeOSrsIK3dB7mXSZ4zYTDlj399AfUCbe7nn3AULkPMkKlLEFQutHeI4xixHIXjATmV1pfsO9hrKvletIu2g0o4m2Tr1JvD24Zl0ymiojRnhJi114NdFdt1I39ywZS9HS-Gv12x7LOvDOXpO5jWTdc1g5kl71WCOWSJEXmT8v9cHeko6yw</recordid><startdate>20221018</startdate><enddate>20221018</enddate><creator>Hao, Yuying</creator><creator>Liu, Yi</creator><creator>Chen, Yizhou</creator><creator>Lin, Han</creator><creator>Peng, Juncai</creator><creator>Tang, Shiyu</creator><creator>Chen, Guowei</creator><creator>Wu, Zewu</creator><creator>Chen, Zeyu</creator><creator>Lai, Baohua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221018</creationdate><title>EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle</title><author>Hao, Yuying ; Liu, Yi ; Chen, Yizhou ; Lin, Han ; Peng, Juncai ; Tang, Shiyu ; Chen, Guowei ; Wu, Zewu ; Chen, Zeyu ; Lai, Baohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27261557863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Source code</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yuying</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Yizhou</creatorcontrib><creatorcontrib>Lin, Han</creatorcontrib><creatorcontrib>Peng, Juncai</creatorcontrib><creatorcontrib>Tang, Shiyu</creatorcontrib><creatorcontrib>Chen, Guowei</creatorcontrib><creatorcontrib>Wu, Zewu</creatorcontrib><creatorcontrib>Chen, Zeyu</creatorcontrib><creatorcontrib>Lai, Baohua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yuying</au><au>Liu, Yi</au><au>Chen, Yizhou</au><au>Lin, Han</au><au>Peng, Juncai</au><au>Tang, Shiyu</au><au>Chen, Guowei</au><au>Wu, Zewu</au><au>Chen, Zeyu</au><au>Lai, Baohua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle</atitle><jtitle>arXiv.org</jtitle><date>2022-10-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In recent years, the rapid development of deep learning has brought great advancements to image and video segmentation methods based on neural networks. However, to unleash the full potential of such models, large numbers of high-quality annotated images are necessary for model training. Currently, many widely used open-source image segmentation software relies heavily on manual annotation which is tedious and time-consuming. In this work, we introduce EISeg, an Efficient Interactive SEGmentation annotation tool that can drastically improve image segmentation annotation efficiency, generating highly accurate segmentation masks with only a few clicks. We also provide various domain-specific models for remote sensing, medical imaging, industrial quality inspections, human segmentation, and temporal aware models for video segmentation. The source code for our algorithm and user interface are available at: https://github.com/PaddlePaddle/PaddleSeg.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2726155786
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Annotations
Image quality
Image segmentation
Machine learning
Medical imaging
Neural networks
Remote sensing
Source code
title EISeg: An Efficient Interactive Segmentation Tool based on PaddlePaddle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EISeg:%20An%20Efficient%20Interactive%20Segmentation%20Tool%20based%20on%20PaddlePaddle&rft.jtitle=arXiv.org&rft.au=Hao,%20Yuying&rft.date=2022-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2726155786%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27261557863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726155786&rft_id=info:pmid/&rfr_iscdi=true