Loading…
A block-based adaptive particle refinement SPH method for fluid–structure interaction problems
The multi-resolution method, e.g., the Adaptive Particle Refinement (APR) method, has been developed to increase the local particle resolution and therefore the solution quality within a pre-defined refinement zone instead of using a globally uniform resolution for Smoothed Particle Hydrodynamics (S...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2022-09, Vol.399, p.115356, Article 115356 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The multi-resolution method, e.g., the Adaptive Particle Refinement (APR) method, has been developed to increase the local particle resolution and therefore the solution quality within a pre-defined refinement zone instead of using a globally uniform resolution for Smoothed Particle Hydrodynamics (SPH). However, sometimes, the targeted zone of interest can be varying, and the corresponding topology is very complex, thus the conventional APR method is not able to track these characteristics adaptively. In this study, a novel Block-based Adaptive Particle Refinement (BAPR) method is developed, which is able to provide the necessary local refinement flexibly for any targeted characteristic, and track it adaptively. In BAPR, the so-called activation status of the block array defines the refinement regions, where the transition and activated zones are determined accordingly. A regularization method for the generated particles in the newly activated blocks is developed to render an isotropic distribution of these new particles. The proposed method has been deployed for simulating Fluid–Structure Interaction (FSI) problems. A set of 2D FSI cases have been simulated with the proposed BAPR method, and the performance of the BAPR method is quantified and validated comprehensively. In a word, the BAPR method is viable and potential for complex multi-resolution FSI simulations by tracking any targeted characteristic of interest. |
---|---|
ISSN: | 0045-7825 |
DOI: | 10.1016/j.cma.2022.115356 |