Loading…
Self-heating in ultra-wide bandgap n-type SrSnO3 thin films
This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the ch...
Saved in:
Published in: | Applied physics letters 2022-10, Vol.121 (16) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3 |
container_end_page | |
container_issue | 16 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 121 |
creator | Golani, Prafful Saha, Chinmoy Nath Sundaram, Prakash P. Liu, Fengdeng Truttmann, Tristan K. Chaganti, V. R. Saran Kumar Jalan, Bharat Singisetti, Uttam Koester, Steven J. |
description | This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices. |
doi_str_mv | 10.1063/5.0105962 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726580181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726580181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNZN0Nxs8SfELCj1UzyG7Sdot2-yaZJX-eyMtehA8DQMP78sMQpdAJkAKdptPCJBcFPQIjYBwjhlAeYxGhBCGC5HDKToLYZPWnDI2QndL01q8Nio2bpU1Lhva6BX-bLTJKuX0SvWZw3HXm2zpl27BsrhOyjbtNpyjE6vaYC4Oc4zeHh9eZ894vnh6md3PcU0FjZjTeiqsEoJwVoMuAIoy9XNiCyW0tUwwUVa2EqAh10QJXikOdgq8ssowy8boap_b--59MCHKTTd4lyol5bTISwIlJHW9V7XvQvDGyt43W-V3Eoj8_o3M5eE3yd7sbaibmE7v3A_-6PwvlL22_-G_yV_ZunAZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726580181</pqid></control><display><type>article</type><title>Self-heating in ultra-wide bandgap n-type SrSnO3 thin films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Golani, Prafful ; Saha, Chinmoy Nath ; Sundaram, Prakash P. ; Liu, Fengdeng ; Truttmann, Tristan K. ; Chaganti, V. R. Saran Kumar ; Jalan, Bharat ; Singisetti, Uttam ; Koester, Steven J.</creator><creatorcontrib>Golani, Prafful ; Saha, Chinmoy Nath ; Sundaram, Prakash P. ; Liu, Fengdeng ; Truttmann, Tristan K. ; Chaganti, V. R. Saran Kumar ; Jalan, Bharat ; Singisetti, Uttam ; Koester, Steven J.</creatorcontrib><description>This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0105962</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Current voltage characteristics ; Dissipation ; Electronic devices ; Heating ; Perovskites ; Pulsed current ; Thermal resistance ; Thermal simulation ; Thin films</subject><ispartof>Applied physics letters, 2022-10, Vol.121 (16)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3</citedby><cites>FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3</cites><orcidid>0000-0003-1141-2556 ; 0000-0002-7940-0490 ; 0000-0002-5328-0750 ; 0000-0003-1190-7815 ; 0000-0003-3016-4340 ; 0000-0001-6201-7009 ; 0000-0002-9215-0107 ; 0000-0001-6104-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0105962$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Golani, Prafful</creatorcontrib><creatorcontrib>Saha, Chinmoy Nath</creatorcontrib><creatorcontrib>Sundaram, Prakash P.</creatorcontrib><creatorcontrib>Liu, Fengdeng</creatorcontrib><creatorcontrib>Truttmann, Tristan K.</creatorcontrib><creatorcontrib>Chaganti, V. R. Saran Kumar</creatorcontrib><creatorcontrib>Jalan, Bharat</creatorcontrib><creatorcontrib>Singisetti, Uttam</creatorcontrib><creatorcontrib>Koester, Steven J.</creatorcontrib><title>Self-heating in ultra-wide bandgap n-type SrSnO3 thin films</title><title>Applied physics letters</title><description>This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.</description><subject>Applied physics</subject><subject>Current voltage characteristics</subject><subject>Dissipation</subject><subject>Electronic devices</subject><subject>Heating</subject><subject>Perovskites</subject><subject>Pulsed current</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNZN0Nxs8SfELCj1UzyG7Sdot2-yaZJX-eyMtehA8DQMP78sMQpdAJkAKdptPCJBcFPQIjYBwjhlAeYxGhBCGC5HDKToLYZPWnDI2QndL01q8Nio2bpU1Lhva6BX-bLTJKuX0SvWZw3HXm2zpl27BsrhOyjbtNpyjE6vaYC4Oc4zeHh9eZ894vnh6md3PcU0FjZjTeiqsEoJwVoMuAIoy9XNiCyW0tUwwUVa2EqAh10QJXikOdgq8ssowy8boap_b--59MCHKTTd4lyol5bTISwIlJHW9V7XvQvDGyt43W-V3Eoj8_o3M5eE3yd7sbaibmE7v3A_-6PwvlL22_-G_yV_ZunAZ</recordid><startdate>20221017</startdate><enddate>20221017</enddate><creator>Golani, Prafful</creator><creator>Saha, Chinmoy Nath</creator><creator>Sundaram, Prakash P.</creator><creator>Liu, Fengdeng</creator><creator>Truttmann, Tristan K.</creator><creator>Chaganti, V. R. Saran Kumar</creator><creator>Jalan, Bharat</creator><creator>Singisetti, Uttam</creator><creator>Koester, Steven J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1141-2556</orcidid><orcidid>https://orcid.org/0000-0002-7940-0490</orcidid><orcidid>https://orcid.org/0000-0002-5328-0750</orcidid><orcidid>https://orcid.org/0000-0003-1190-7815</orcidid><orcidid>https://orcid.org/0000-0003-3016-4340</orcidid><orcidid>https://orcid.org/0000-0001-6201-7009</orcidid><orcidid>https://orcid.org/0000-0002-9215-0107</orcidid><orcidid>https://orcid.org/0000-0001-6104-1218</orcidid></search><sort><creationdate>20221017</creationdate><title>Self-heating in ultra-wide bandgap n-type SrSnO3 thin films</title><author>Golani, Prafful ; Saha, Chinmoy Nath ; Sundaram, Prakash P. ; Liu, Fengdeng ; Truttmann, Tristan K. ; Chaganti, V. R. Saran Kumar ; Jalan, Bharat ; Singisetti, Uttam ; Koester, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Current voltage characteristics</topic><topic>Dissipation</topic><topic>Electronic devices</topic><topic>Heating</topic><topic>Perovskites</topic><topic>Pulsed current</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golani, Prafful</creatorcontrib><creatorcontrib>Saha, Chinmoy Nath</creatorcontrib><creatorcontrib>Sundaram, Prakash P.</creatorcontrib><creatorcontrib>Liu, Fengdeng</creatorcontrib><creatorcontrib>Truttmann, Tristan K.</creatorcontrib><creatorcontrib>Chaganti, V. R. Saran Kumar</creatorcontrib><creatorcontrib>Jalan, Bharat</creatorcontrib><creatorcontrib>Singisetti, Uttam</creatorcontrib><creatorcontrib>Koester, Steven J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golani, Prafful</au><au>Saha, Chinmoy Nath</au><au>Sundaram, Prakash P.</au><au>Liu, Fengdeng</au><au>Truttmann, Tristan K.</au><au>Chaganti, V. R. Saran Kumar</au><au>Jalan, Bharat</au><au>Singisetti, Uttam</au><au>Koester, Steven J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-heating in ultra-wide bandgap n-type SrSnO3 thin films</atitle><jtitle>Applied physics letters</jtitle><date>2022-10-17</date><risdate>2022</risdate><volume>121</volume><issue>16</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0105962</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1141-2556</orcidid><orcidid>https://orcid.org/0000-0002-7940-0490</orcidid><orcidid>https://orcid.org/0000-0002-5328-0750</orcidid><orcidid>https://orcid.org/0000-0003-1190-7815</orcidid><orcidid>https://orcid.org/0000-0003-3016-4340</orcidid><orcidid>https://orcid.org/0000-0001-6201-7009</orcidid><orcidid>https://orcid.org/0000-0002-9215-0107</orcidid><orcidid>https://orcid.org/0000-0001-6104-1218</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-10, Vol.121 (16) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2726580181 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Applied physics Current voltage characteristics Dissipation Electronic devices Heating Perovskites Pulsed current Thermal resistance Thermal simulation Thin films |
title | Self-heating in ultra-wide bandgap n-type SrSnO3 thin films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-heating%20in%20ultra-wide%20bandgap%20n-type%20SrSnO3%20thin%20films&rft.jtitle=Applied%20physics%20letters&rft.au=Golani,%20Prafful&rft.date=2022-10-17&rft.volume=121&rft.issue=16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0105962&rft_dat=%3Cproquest_cross%3E2726580181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726580181&rft_id=info:pmid/&rfr_iscdi=true |