Loading…

Self-heating in ultra-wide bandgap n-type SrSnO3 thin films

This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the ch...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2022-10, Vol.121 (16)
Main Authors: Golani, Prafful, Saha, Chinmoy Nath, Sundaram, Prakash P., Liu, Fengdeng, Truttmann, Tristan K., Chaganti, V. R. Saran Kumar, Jalan, Bharat, Singisetti, Uttam, Koester, Steven J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3
cites cdi_FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3
container_end_page
container_issue 16
container_start_page
container_title Applied physics letters
container_volume 121
creator Golani, Prafful
Saha, Chinmoy Nath
Sundaram, Prakash P.
Liu, Fengdeng
Truttmann, Tristan K.
Chaganti, V. R. Saran Kumar
Jalan, Bharat
Singisetti, Uttam
Koester, Steven J.
description This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.
doi_str_mv 10.1063/5.0105962
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726580181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726580181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNZN0Nxs8SfELCj1UzyG7Sdot2-yaZJX-eyMtehA8DQMP78sMQpdAJkAKdptPCJBcFPQIjYBwjhlAeYxGhBCGC5HDKToLYZPWnDI2QndL01q8Nio2bpU1Lhva6BX-bLTJKuX0SvWZw3HXm2zpl27BsrhOyjbtNpyjE6vaYC4Oc4zeHh9eZ894vnh6md3PcU0FjZjTeiqsEoJwVoMuAIoy9XNiCyW0tUwwUVa2EqAh10QJXikOdgq8ssowy8boap_b--59MCHKTTd4lyol5bTISwIlJHW9V7XvQvDGyt43W-V3Eoj8_o3M5eE3yd7sbaibmE7v3A_-6PwvlL22_-G_yV_ZunAZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726580181</pqid></control><display><type>article</type><title>Self-heating in ultra-wide bandgap n-type SrSnO3 thin films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Golani, Prafful ; Saha, Chinmoy Nath ; Sundaram, Prakash P. ; Liu, Fengdeng ; Truttmann, Tristan K. ; Chaganti, V. R. Saran Kumar ; Jalan, Bharat ; Singisetti, Uttam ; Koester, Steven J.</creator><creatorcontrib>Golani, Prafful ; Saha, Chinmoy Nath ; Sundaram, Prakash P. ; Liu, Fengdeng ; Truttmann, Tristan K. ; Chaganti, V. R. Saran Kumar ; Jalan, Bharat ; Singisetti, Uttam ; Koester, Steven J.</creatorcontrib><description>This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0105962</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Current voltage characteristics ; Dissipation ; Electronic devices ; Heating ; Perovskites ; Pulsed current ; Thermal resistance ; Thermal simulation ; Thin films</subject><ispartof>Applied physics letters, 2022-10, Vol.121 (16)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3</citedby><cites>FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3</cites><orcidid>0000-0003-1141-2556 ; 0000-0002-7940-0490 ; 0000-0002-5328-0750 ; 0000-0003-1190-7815 ; 0000-0003-3016-4340 ; 0000-0001-6201-7009 ; 0000-0002-9215-0107 ; 0000-0001-6104-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0105962$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Golani, Prafful</creatorcontrib><creatorcontrib>Saha, Chinmoy Nath</creatorcontrib><creatorcontrib>Sundaram, Prakash P.</creatorcontrib><creatorcontrib>Liu, Fengdeng</creatorcontrib><creatorcontrib>Truttmann, Tristan K.</creatorcontrib><creatorcontrib>Chaganti, V. R. Saran Kumar</creatorcontrib><creatorcontrib>Jalan, Bharat</creatorcontrib><creatorcontrib>Singisetti, Uttam</creatorcontrib><creatorcontrib>Koester, Steven J.</creatorcontrib><title>Self-heating in ultra-wide bandgap n-type SrSnO3 thin films</title><title>Applied physics letters</title><description>This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.</description><subject>Applied physics</subject><subject>Current voltage characteristics</subject><subject>Dissipation</subject><subject>Electronic devices</subject><subject>Heating</subject><subject>Perovskites</subject><subject>Pulsed current</subject><subject>Thermal resistance</subject><subject>Thermal simulation</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNZN0Nxs8SfELCj1UzyG7Sdot2-yaZJX-eyMtehA8DQMP78sMQpdAJkAKdptPCJBcFPQIjYBwjhlAeYxGhBCGC5HDKToLYZPWnDI2QndL01q8Nio2bpU1Lhva6BX-bLTJKuX0SvWZw3HXm2zpl27BsrhOyjbtNpyjE6vaYC4Oc4zeHh9eZ894vnh6md3PcU0FjZjTeiqsEoJwVoMuAIoy9XNiCyW0tUwwUVa2EqAh10QJXikOdgq8ssowy8boap_b--59MCHKTTd4lyol5bTISwIlJHW9V7XvQvDGyt43W-V3Eoj8_o3M5eE3yd7sbaibmE7v3A_-6PwvlL22_-G_yV_ZunAZ</recordid><startdate>20221017</startdate><enddate>20221017</enddate><creator>Golani, Prafful</creator><creator>Saha, Chinmoy Nath</creator><creator>Sundaram, Prakash P.</creator><creator>Liu, Fengdeng</creator><creator>Truttmann, Tristan K.</creator><creator>Chaganti, V. R. Saran Kumar</creator><creator>Jalan, Bharat</creator><creator>Singisetti, Uttam</creator><creator>Koester, Steven J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1141-2556</orcidid><orcidid>https://orcid.org/0000-0002-7940-0490</orcidid><orcidid>https://orcid.org/0000-0002-5328-0750</orcidid><orcidid>https://orcid.org/0000-0003-1190-7815</orcidid><orcidid>https://orcid.org/0000-0003-3016-4340</orcidid><orcidid>https://orcid.org/0000-0001-6201-7009</orcidid><orcidid>https://orcid.org/0000-0002-9215-0107</orcidid><orcidid>https://orcid.org/0000-0001-6104-1218</orcidid></search><sort><creationdate>20221017</creationdate><title>Self-heating in ultra-wide bandgap n-type SrSnO3 thin films</title><author>Golani, Prafful ; Saha, Chinmoy Nath ; Sundaram, Prakash P. ; Liu, Fengdeng ; Truttmann, Tristan K. ; Chaganti, V. R. Saran Kumar ; Jalan, Bharat ; Singisetti, Uttam ; Koester, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Current voltage characteristics</topic><topic>Dissipation</topic><topic>Electronic devices</topic><topic>Heating</topic><topic>Perovskites</topic><topic>Pulsed current</topic><topic>Thermal resistance</topic><topic>Thermal simulation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golani, Prafful</creatorcontrib><creatorcontrib>Saha, Chinmoy Nath</creatorcontrib><creatorcontrib>Sundaram, Prakash P.</creatorcontrib><creatorcontrib>Liu, Fengdeng</creatorcontrib><creatorcontrib>Truttmann, Tristan K.</creatorcontrib><creatorcontrib>Chaganti, V. R. Saran Kumar</creatorcontrib><creatorcontrib>Jalan, Bharat</creatorcontrib><creatorcontrib>Singisetti, Uttam</creatorcontrib><creatorcontrib>Koester, Steven J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golani, Prafful</au><au>Saha, Chinmoy Nath</au><au>Sundaram, Prakash P.</au><au>Liu, Fengdeng</au><au>Truttmann, Tristan K.</au><au>Chaganti, V. R. Saran Kumar</au><au>Jalan, Bharat</au><au>Singisetti, Uttam</au><au>Koester, Steven J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-heating in ultra-wide bandgap n-type SrSnO3 thin films</atitle><jtitle>Applied physics letters</jtitle><date>2022-10-17</date><risdate>2022</risdate><volume>121</volume><issue>16</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>This work reports the quantification of rise in channel temperature due to self-heating in two-terminal SrSnO3 thin film devices under electrical bias. Using pulsed current–voltage (I–V) measurements, thermal resistances of the thin films were determined by extracting the relationship between the channel temperature and the dissipated power. For a 26-nm-thick n-doped SrSnO3 channel with an area of 200 μm2, a thermal resistance of 260.1 ± 24.5 K mm/W was obtained. For a modest dissipated power of 0.5 W/mm, the channel temperature rose to ∼176 °C, a value which increases further at higher power levels. Electro-thermal simulations were performed which showed close agreement between the simulated and experimental I–V characteristics both in the absence and presence of self-heating. The work presented is critical for the development of perovskite-based high-power electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0105962</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1141-2556</orcidid><orcidid>https://orcid.org/0000-0002-7940-0490</orcidid><orcidid>https://orcid.org/0000-0002-5328-0750</orcidid><orcidid>https://orcid.org/0000-0003-1190-7815</orcidid><orcidid>https://orcid.org/0000-0003-3016-4340</orcidid><orcidid>https://orcid.org/0000-0001-6201-7009</orcidid><orcidid>https://orcid.org/0000-0002-9215-0107</orcidid><orcidid>https://orcid.org/0000-0001-6104-1218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-10, Vol.121 (16)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2726580181
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Applied physics
Current voltage characteristics
Dissipation
Electronic devices
Heating
Perovskites
Pulsed current
Thermal resistance
Thermal simulation
Thin films
title Self-heating in ultra-wide bandgap n-type SrSnO3 thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-heating%20in%20ultra-wide%20bandgap%20n-type%20SrSnO3%20thin%20films&rft.jtitle=Applied%20physics%20letters&rft.au=Golani,%20Prafful&rft.date=2022-10-17&rft.volume=121&rft.issue=16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0105962&rft_dat=%3Cproquest_cross%3E2726580181%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-72c49fa99073c1d6116800070f6a9dff39398bfb91d15d0a97ba71f417bfae3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726580181&rft_id=info:pmid/&rfr_iscdi=true