Loading…
A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy
In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this datase...
Saved in:
Published in: | Neural computing & applications 2022-11, Vol.34 (21), p.18881-18894 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3 |
container_end_page | 18894 |
container_issue | 21 |
container_start_page | 18881 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Wang, Qiang Hopgood, James R. Fernandes, Susan Finlayson, Neil Williams, Gareth O. S. Akram, Ahsan R. Dhaliwal, Kevin Vallejo, Marta |
description | In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classification performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a shortcut connection and the aggregations by
Addition
or
Concatenation
, we first evaluate the impact of different configurations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale architectures at different levels. |
doi_str_mv | 10.1007/s00521-022-07481-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726618952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726618952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ2mbbo4hfIHjRc0gnkzWSbdekVfbfG13Bm6c5zPO8M7yMnUm4kADLywzQKClAKQHLupVC7rGFrKtKVNC0-2wBXV3Wuq4O2VHObwBQ67ZZsM8rHu2Wkoj0QZGv5zgFkdFG4jbha5gIpzkR92PicR5WHO2AlDhGm3PwAe0UxoF_humV-ziPiTJSIXgMnqawJh7WdhWKSIMb1wHTmHHcbE_Ygbcx0-nvPGYvtzfP1_fi8enu4frqUWClq0lQC6TI6R6dtUtC653sO6xd10Hv0FvSTd9T76CRunVt12mnnIReeqwV2uqYne9yN2l8nylP5m2c01BOGrVUWsu2a1Sh1I76fi8n8maTyt9paySY74LNrmBTCjY_BRtZpGon5QIPK0p_0f9YX4rvgrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726618952</pqid></control><display><type>article</type><title>A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy</title><source>Springer Nature</source><creator>Wang, Qiang ; Hopgood, James R. ; Fernandes, Susan ; Finlayson, Neil ; Williams, Gareth O. S. ; Akram, Ahsan R. ; Dhaliwal, Kevin ; Vallejo, Marta</creator><creatorcontrib>Wang, Qiang ; Hopgood, James R. ; Fernandes, Susan ; Finlayson, Neil ; Williams, Gareth O. S. ; Akram, Ahsan R. ; Dhaliwal, Kevin ; Vallejo, Marta</creatorcontrib><description>In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classification performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a shortcut connection and the aggregations by
Addition
or
Concatenation
, we first evaluate the impact of different configurations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale architectures at different levels.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07481-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Best practice ; Cancer ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Configuration management ; Data Mining and Knowledge Discovery ; Datasets ; Feature extraction ; Fluorescence ; Image Processing and Computer Vision ; Lung cancer ; Medical imaging ; Original Article ; Probability and Statistics in Computer Science ; Scale models</subject><ispartof>Neural computing & applications, 2022-11, Vol.34 (21), p.18881-18894</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3</citedby><cites>FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3</cites><orcidid>0000-0001-9957-954X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Hopgood, James R.</creatorcontrib><creatorcontrib>Fernandes, Susan</creatorcontrib><creatorcontrib>Finlayson, Neil</creatorcontrib><creatorcontrib>Williams, Gareth O. S.</creatorcontrib><creatorcontrib>Akram, Ahsan R.</creatorcontrib><creatorcontrib>Dhaliwal, Kevin</creatorcontrib><creatorcontrib>Vallejo, Marta</creatorcontrib><title>A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classification performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a shortcut connection and the aggregations by
Addition
or
Concatenation
, we first evaluate the impact of different configurations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale architectures at different levels.</description><subject>Artificial Intelligence</subject><subject>Best practice</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Configuration management</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Fluorescence</subject><subject>Image Processing and Computer Vision</subject><subject>Lung cancer</subject><subject>Medical imaging</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Scale models</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ2mbbo4hfIHjRc0gnkzWSbdekVfbfG13Bm6c5zPO8M7yMnUm4kADLywzQKClAKQHLupVC7rGFrKtKVNC0-2wBXV3Wuq4O2VHObwBQ67ZZsM8rHu2Wkoj0QZGv5zgFkdFG4jbha5gIpzkR92PicR5WHO2AlDhGm3PwAe0UxoF_humV-ziPiTJSIXgMnqawJh7WdhWKSIMb1wHTmHHcbE_Ygbcx0-nvPGYvtzfP1_fi8enu4frqUWClq0lQC6TI6R6dtUtC653sO6xd10Hv0FvSTd9T76CRunVt12mnnIReeqwV2uqYne9yN2l8nylP5m2c01BOGrVUWsu2a1Sh1I76fi8n8maTyt9paySY74LNrmBTCjY_BRtZpGon5QIPK0p_0f9YX4rvgrQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Wang, Qiang</creator><creator>Hopgood, James R.</creator><creator>Fernandes, Susan</creator><creator>Finlayson, Neil</creator><creator>Williams, Gareth O. S.</creator><creator>Akram, Ahsan R.</creator><creator>Dhaliwal, Kevin</creator><creator>Vallejo, Marta</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9957-954X</orcidid></search><sort><creationdate>20221101</creationdate><title>A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy</title><author>Wang, Qiang ; Hopgood, James R. ; Fernandes, Susan ; Finlayson, Neil ; Williams, Gareth O. S. ; Akram, Ahsan R. ; Dhaliwal, Kevin ; Vallejo, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Best practice</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Configuration management</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Fluorescence</topic><topic>Image Processing and Computer Vision</topic><topic>Lung cancer</topic><topic>Medical imaging</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Scale models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Hopgood, James R.</creatorcontrib><creatorcontrib>Fernandes, Susan</creatorcontrib><creatorcontrib>Finlayson, Neil</creatorcontrib><creatorcontrib>Williams, Gareth O. S.</creatorcontrib><creatorcontrib>Akram, Ahsan R.</creatorcontrib><creatorcontrib>Dhaliwal, Kevin</creatorcontrib><creatorcontrib>Vallejo, Marta</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiang</au><au>Hopgood, James R.</au><au>Fernandes, Susan</au><au>Finlayson, Neil</au><au>Williams, Gareth O. S.</au><au>Akram, Ahsan R.</au><au>Dhaliwal, Kevin</au><au>Vallejo, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>21</issue><spage>18881</spage><epage>18894</epage><pages>18881-18894</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classification performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a shortcut connection and the aggregations by
Addition
or
Concatenation
, we first evaluate the impact of different configurations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale architectures at different levels.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07481-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9957-954X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-11, Vol.34 (21), p.18881-18894 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2726618952 |
source | Springer Nature |
subjects | Artificial Intelligence Best practice Cancer Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Configuration management Data Mining and Knowledge Discovery Datasets Feature extraction Fluorescence Image Processing and Computer Vision Lung cancer Medical imaging Original Article Probability and Statistics in Computer Science Scale models |
title | A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20layer-level%20multi-scale%20architecture%20for%20lung%20cancer%20classification%20with%20fluorescence%20lifetime%20imaging%20endomicroscopy&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Wang,%20Qiang&rft.date=2022-11-01&rft.volume=34&rft.issue=21&rft.spage=18881&rft.epage=18894&rft.pages=18881-18894&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07481-1&rft_dat=%3Cproquest_cross%3E2726618952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726618952&rft_id=info:pmid/&rfr_iscdi=true |