Loading…

A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy

In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this datase...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2022-11, Vol.34 (21), p.18881-18894
Main Authors: Wang, Qiang, Hopgood, James R., Fernandes, Susan, Finlayson, Neil, Williams, Gareth O. S., Akram, Ahsan R., Dhaliwal, Kevin, Vallejo, Marta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3
cites cdi_FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3
container_end_page 18894
container_issue 21
container_start_page 18881
container_title Neural computing & applications
container_volume 34
creator Wang, Qiang
Hopgood, James R.
Fernandes, Susan
Finlayson, Neil
Williams, Gareth O. S.
Akram, Ahsan R.
Dhaliwal, Kevin
Vallejo, Marta
description In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classification performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a shortcut connection and the aggregations by Addition or Concatenation , we first evaluate the impact of different configurations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale architectures at different levels.
doi_str_mv 10.1007/s00521-022-07481-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726618952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726618952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ2mbbo4hfIHjRc0gnkzWSbdekVfbfG13Bm6c5zPO8M7yMnUm4kADLywzQKClAKQHLupVC7rGFrKtKVNC0-2wBXV3Wuq4O2VHObwBQ67ZZsM8rHu2Wkoj0QZGv5zgFkdFG4jbha5gIpzkR92PicR5WHO2AlDhGm3PwAe0UxoF_humV-ziPiTJSIXgMnqawJh7WdhWKSIMb1wHTmHHcbE_Ygbcx0-nvPGYvtzfP1_fi8enu4frqUWClq0lQC6TI6R6dtUtC653sO6xd10Hv0FvSTd9T76CRunVt12mnnIReeqwV2uqYne9yN2l8nylP5m2c01BOGrVUWsu2a1Sh1I76fi8n8maTyt9paySY74LNrmBTCjY_BRtZpGon5QIPK0p_0f9YX4rvgrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726618952</pqid></control><display><type>article</type><title>A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy</title><source>Springer Nature</source><creator>Wang, Qiang ; Hopgood, James R. ; Fernandes, Susan ; Finlayson, Neil ; Williams, Gareth O. S. ; Akram, Ahsan R. ; Dhaliwal, Kevin ; Vallejo, Marta</creator><creatorcontrib>Wang, Qiang ; Hopgood, James R. ; Fernandes, Susan ; Finlayson, Neil ; Williams, Gareth O. S. ; Akram, Ahsan R. ; Dhaliwal, Kevin ; Vallejo, Marta</creatorcontrib><description>In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classification performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a shortcut connection and the aggregations by Addition or Concatenation , we first evaluate the impact of different configurations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale architectures at different levels.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07481-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Best practice ; Cancer ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Configuration management ; Data Mining and Knowledge Discovery ; Datasets ; Feature extraction ; Fluorescence ; Image Processing and Computer Vision ; Lung cancer ; Medical imaging ; Original Article ; Probability and Statistics in Computer Science ; Scale models</subject><ispartof>Neural computing &amp; applications, 2022-11, Vol.34 (21), p.18881-18894</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3</citedby><cites>FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3</cites><orcidid>0000-0001-9957-954X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Hopgood, James R.</creatorcontrib><creatorcontrib>Fernandes, Susan</creatorcontrib><creatorcontrib>Finlayson, Neil</creatorcontrib><creatorcontrib>Williams, Gareth O. S.</creatorcontrib><creatorcontrib>Akram, Ahsan R.</creatorcontrib><creatorcontrib>Dhaliwal, Kevin</creatorcontrib><creatorcontrib>Vallejo, Marta</creatorcontrib><title>A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classification performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a shortcut connection and the aggregations by Addition or Concatenation , we first evaluate the impact of different configurations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale architectures at different levels.</description><subject>Artificial Intelligence</subject><subject>Best practice</subject><subject>Cancer</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Configuration management</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Fluorescence</subject><subject>Image Processing and Computer Vision</subject><subject>Lung cancer</subject><subject>Medical imaging</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Scale models</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz9FJ2mbbo4hfIHjRc0gnkzWSbdekVfbfG13Bm6c5zPO8M7yMnUm4kADLywzQKClAKQHLupVC7rGFrKtKVNC0-2wBXV3Wuq4O2VHObwBQ67ZZsM8rHu2Wkoj0QZGv5zgFkdFG4jbha5gIpzkR92PicR5WHO2AlDhGm3PwAe0UxoF_humV-ziPiTJSIXgMnqawJh7WdhWKSIMb1wHTmHHcbE_Ygbcx0-nvPGYvtzfP1_fi8enu4frqUWClq0lQC6TI6R6dtUtC653sO6xd10Hv0FvSTd9T76CRunVt12mnnIReeqwV2uqYne9yN2l8nylP5m2c01BOGrVUWsu2a1Sh1I76fi8n8maTyt9paySY74LNrmBTCjY_BRtZpGon5QIPK0p_0f9YX4rvgrQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Wang, Qiang</creator><creator>Hopgood, James R.</creator><creator>Fernandes, Susan</creator><creator>Finlayson, Neil</creator><creator>Williams, Gareth O. S.</creator><creator>Akram, Ahsan R.</creator><creator>Dhaliwal, Kevin</creator><creator>Vallejo, Marta</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9957-954X</orcidid></search><sort><creationdate>20221101</creationdate><title>A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy</title><author>Wang, Qiang ; Hopgood, James R. ; Fernandes, Susan ; Finlayson, Neil ; Williams, Gareth O. S. ; Akram, Ahsan R. ; Dhaliwal, Kevin ; Vallejo, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Best practice</topic><topic>Cancer</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Configuration management</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Fluorescence</topic><topic>Image Processing and Computer Vision</topic><topic>Lung cancer</topic><topic>Medical imaging</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Scale models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Hopgood, James R.</creatorcontrib><creatorcontrib>Fernandes, Susan</creatorcontrib><creatorcontrib>Finlayson, Neil</creatorcontrib><creatorcontrib>Williams, Gareth O. S.</creatorcontrib><creatorcontrib>Akram, Ahsan R.</creatorcontrib><creatorcontrib>Dhaliwal, Kevin</creatorcontrib><creatorcontrib>Vallejo, Marta</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiang</au><au>Hopgood, James R.</au><au>Fernandes, Susan</au><au>Finlayson, Neil</au><au>Williams, Gareth O. S.</au><au>Akram, Ahsan R.</au><au>Dhaliwal, Kevin</au><au>Vallejo, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>21</issue><spage>18881</spage><epage>18894</epage><pages>18881-18894</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, we introduce our unique dataset of fluorescence lifetime imaging endo/microscopy (FLIM), containing over 100,000 different FLIM images collected from 18 pairs of cancer/non-cancer human lung tissues of 18 patients by our custom fibre-based FLIM system. The aim of providing this dataset is that more researchers from relevant fields can push forward this particular area of research. Afterwards, we describe the best practice of image post-processing suitable per the dataset. In addition, we propose a novel hierarchically aggregated multi-scale architecture to improve the binary classification performance of classic CNNs. The proposed model integrates the advantages of multi-scale feature extraction at different levels, where layer-wise global information is aggregated with branch-wise local information. We integrate the proposal, namely ResNetZ, into ResNet, and appraise it on the FLIM dataset. Since ResNetZ can be configured with a shortcut connection and the aggregations by Addition or Concatenation , we first evaluate the impact of different configurations on the performance. We thoroughly examine various ResNetZ variants to demonstrate the superiority. We also compare our model with a feature-level multi-scale model to illustrate the advantages and disadvantages of multi-scale architectures at different levels.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07481-1</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9957-954X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-11, Vol.34 (21), p.18881-18894
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2726618952
source Springer Nature
subjects Artificial Intelligence
Best practice
Cancer
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Configuration management
Data Mining and Knowledge Discovery
Datasets
Feature extraction
Fluorescence
Image Processing and Computer Vision
Lung cancer
Medical imaging
Original Article
Probability and Statistics in Computer Science
Scale models
title A layer-level multi-scale architecture for lung cancer classification with fluorescence lifetime imaging endomicroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T16%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20layer-level%20multi-scale%20architecture%20for%20lung%20cancer%20classification%20with%20fluorescence%20lifetime%20imaging%20endomicroscopy&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Wang,%20Qiang&rft.date=2022-11-01&rft.volume=34&rft.issue=21&rft.spage=18881&rft.epage=18894&rft.pages=18881-18894&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07481-1&rft_dat=%3Cproquest_cross%3E2726618952%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-e80e2ed6bcdaa7ecafd1b9c4d990bdcfae65bbebd05168d8996d2d10b1fc42ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726618952&rft_id=info:pmid/&rfr_iscdi=true