Loading…
Investigation of ANN architecture for predicting residual strength of clay soil
This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive mine...
Saved in:
Published in: | Neural computing & applications 2022-11, Vol.34 (21), p.19253-19268 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373 |
container_end_page | 19268 |
container_issue | 21 |
container_start_page | 19253 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Tran, Van Quan Dang, Viet Quoc Do, Hai Quan Ho, Lanh Si |
description | This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive minerals, mica, kaolinite, and smectite, in which the output is the residual friction angle. The ANN model was developed by extensively analyzing a number of hidden layers and number of neurons in every layer, incorporating a statistical investigation of the model performance. The obtained results indicate that the ANN model is an outperformed and promising method based on various well-known indicators such as correlation coefficient, mean absolute error, and root mean square error. The achieved ANN model also gives higher estimation accuracy than those results in the literature. Finally, partial dependence plot 2-D was used for sensitivity analysis within the ANN algorithm to investigate the effect of coupled input variables on the estimated residual friction angle of the soil. It was found that A-line value, clay fraction, and massive minerals are the most important input parameters influencing the residual friction angle. |
doi_str_mv | 10.1007/s00521-022-07547-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726619043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726619043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOPidOxqriS6rapbuVuHbqKiTFdpD670kJEhvTDfc-7-keQu45PHIA9RQBMsEZCMFAZVIxuCAzLhEZQlZckhmUclznEq_JTYwHAJB5kc3I5r37sjH5pkq-72jv6GK9plUwe5-sSUOw1PWBHoPdeZN819Bgo98NVUtjCrZr0v4MmbY60dj79pZcuaqN9u53zsn25Xm7fGOrzev7crFiBnmZWKaELUuOTjjjnBWyrGWG9U7JCpw1tVDI0SJymXFVS65ACYdFjqosFCqck4ep9hj6z2F8QB_6IXTjRS2UyHNewvj8nIgpZUIfY7BOH4P_qMJJc9Bnb3rypkdv-sebhhHCCYpjuGts-Kv-h_oGmCNvSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726619043</pqid></control><display><type>article</type><title>Investigation of ANN architecture for predicting residual strength of clay soil</title><source>Springer Nature</source><creator>Tran, Van Quan ; Dang, Viet Quoc ; Do, Hai Quan ; Ho, Lanh Si</creator><creatorcontrib>Tran, Van Quan ; Dang, Viet Quoc ; Do, Hai Quan ; Ho, Lanh Si</creatorcontrib><description>This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive minerals, mica, kaolinite, and smectite, in which the output is the residual friction angle. The ANN model was developed by extensively analyzing a number of hidden layers and number of neurons in every layer, incorporating a statistical investigation of the model performance. The obtained results indicate that the ANN model is an outperformed and promising method based on various well-known indicators such as correlation coefficient, mean absolute error, and root mean square error. The achieved ANN model also gives higher estimation accuracy than those results in the literature. Finally, partial dependence plot 2-D was used for sensitivity analysis within the ANN algorithm to investigate the effect of coupled input variables on the estimated residual friction angle of the soil. It was found that A-line value, clay fraction, and massive minerals are the most important input parameters influencing the residual friction angle.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07547-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Clay minerals ; Clay soils ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Correlation coefficients ; Data Mining and Knowledge Discovery ; Estimation ; Friction ; Image Processing and Computer Vision ; Kaolinite ; Liquid limits ; Mathematical models ; Mica ; Original Article ; Parameters ; Probability and Statistics in Computer Science ; Residual strength ; Sensitivity analysis ; Smectites ; Soil strength ; Soils ; Two dimensional analysis</subject><ispartof>Neural computing & applications, 2022-11, Vol.34 (21), p.19253-19268</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373</citedby><cites>FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373</cites><orcidid>0000-0002-4157-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tran, Van Quan</creatorcontrib><creatorcontrib>Dang, Viet Quoc</creatorcontrib><creatorcontrib>Do, Hai Quan</creatorcontrib><creatorcontrib>Ho, Lanh Si</creatorcontrib><title>Investigation of ANN architecture for predicting residual strength of clay soil</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive minerals, mica, kaolinite, and smectite, in which the output is the residual friction angle. The ANN model was developed by extensively analyzing a number of hidden layers and number of neurons in every layer, incorporating a statistical investigation of the model performance. The obtained results indicate that the ANN model is an outperformed and promising method based on various well-known indicators such as correlation coefficient, mean absolute error, and root mean square error. The achieved ANN model also gives higher estimation accuracy than those results in the literature. Finally, partial dependence plot 2-D was used for sensitivity analysis within the ANN algorithm to investigate the effect of coupled input variables on the estimated residual friction angle of the soil. It was found that A-line value, clay fraction, and massive minerals are the most important input parameters influencing the residual friction angle.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Clay minerals</subject><subject>Clay soils</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Correlation coefficients</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Estimation</subject><subject>Friction</subject><subject>Image Processing and Computer Vision</subject><subject>Kaolinite</subject><subject>Liquid limits</subject><subject>Mathematical models</subject><subject>Mica</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Probability and Statistics in Computer Science</subject><subject>Residual strength</subject><subject>Sensitivity analysis</subject><subject>Smectites</subject><subject>Soil strength</subject><subject>Soils</subject><subject>Two dimensional analysis</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOPidOxqriS6rapbuVuHbqKiTFdpD670kJEhvTDfc-7-keQu45PHIA9RQBMsEZCMFAZVIxuCAzLhEZQlZckhmUclznEq_JTYwHAJB5kc3I5r37sjH5pkq-72jv6GK9plUwe5-sSUOw1PWBHoPdeZN819Bgo98NVUtjCrZr0v4MmbY60dj79pZcuaqN9u53zsn25Xm7fGOrzev7crFiBnmZWKaELUuOTjjjnBWyrGWG9U7JCpw1tVDI0SJymXFVS65ACYdFjqosFCqck4ep9hj6z2F8QB_6IXTjRS2UyHNewvj8nIgpZUIfY7BOH4P_qMJJc9Bnb3rypkdv-sebhhHCCYpjuGts-Kv-h_oGmCNvSg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Tran, Van Quan</creator><creator>Dang, Viet Quoc</creator><creator>Do, Hai Quan</creator><creator>Ho, Lanh Si</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4157-7717</orcidid></search><sort><creationdate>20221101</creationdate><title>Investigation of ANN architecture for predicting residual strength of clay soil</title><author>Tran, Van Quan ; Dang, Viet Quoc ; Do, Hai Quan ; Ho, Lanh Si</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Clay minerals</topic><topic>Clay soils</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Correlation coefficients</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Estimation</topic><topic>Friction</topic><topic>Image Processing and Computer Vision</topic><topic>Kaolinite</topic><topic>Liquid limits</topic><topic>Mathematical models</topic><topic>Mica</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Probability and Statistics in Computer Science</topic><topic>Residual strength</topic><topic>Sensitivity analysis</topic><topic>Smectites</topic><topic>Soil strength</topic><topic>Soils</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Van Quan</creatorcontrib><creatorcontrib>Dang, Viet Quoc</creatorcontrib><creatorcontrib>Do, Hai Quan</creatorcontrib><creatorcontrib>Ho, Lanh Si</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Van Quan</au><au>Dang, Viet Quoc</au><au>Do, Hai Quan</au><au>Ho, Lanh Si</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of ANN architecture for predicting residual strength of clay soil</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>21</issue><spage>19253</spage><epage>19268</epage><pages>19253-19268</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive minerals, mica, kaolinite, and smectite, in which the output is the residual friction angle. The ANN model was developed by extensively analyzing a number of hidden layers and number of neurons in every layer, incorporating a statistical investigation of the model performance. The obtained results indicate that the ANN model is an outperformed and promising method based on various well-known indicators such as correlation coefficient, mean absolute error, and root mean square error. The achieved ANN model also gives higher estimation accuracy than those results in the literature. Finally, partial dependence plot 2-D was used for sensitivity analysis within the ANN algorithm to investigate the effect of coupled input variables on the estimated residual friction angle of the soil. It was found that A-line value, clay fraction, and massive minerals are the most important input parameters influencing the residual friction angle.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07547-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4157-7717</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-11, Vol.34 (21), p.19253-19268 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2726619043 |
source | Springer Nature |
subjects | Algorithms Artificial Intelligence Artificial neural networks Clay minerals Clay soils Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Correlation coefficients Data Mining and Knowledge Discovery Estimation Friction Image Processing and Computer Vision Kaolinite Liquid limits Mathematical models Mica Original Article Parameters Probability and Statistics in Computer Science Residual strength Sensitivity analysis Smectites Soil strength Soils Two dimensional analysis |
title | Investigation of ANN architecture for predicting residual strength of clay soil |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20ANN%20architecture%20for%20predicting%20residual%20strength%20of%20clay%20soil&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Tran,%20Van%20Quan&rft.date=2022-11-01&rft.volume=34&rft.issue=21&rft.spage=19253&rft.epage=19268&rft.pages=19253-19268&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07547-0&rft_dat=%3Cproquest_cross%3E2726619043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726619043&rft_id=info:pmid/&rfr_iscdi=true |