Loading…

Investigation of ANN architecture for predicting residual strength of clay soil

This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive mine...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2022-11, Vol.34 (21), p.19253-19268
Main Authors: Tran, Van Quan, Dang, Viet Quoc, Do, Hai Quan, Ho, Lanh Si
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373
cites cdi_FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373
container_end_page 19268
container_issue 21
container_start_page 19253
container_title Neural computing & applications
container_volume 34
creator Tran, Van Quan
Dang, Viet Quoc
Do, Hai Quan
Ho, Lanh Si
description This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive minerals, mica, kaolinite, and smectite, in which the output is the residual friction angle. The ANN model was developed by extensively analyzing a number of hidden layers and number of neurons in every layer, incorporating a statistical investigation of the model performance. The obtained results indicate that the ANN model is an outperformed and promising method based on various well-known indicators such as correlation coefficient, mean absolute error, and root mean square error. The achieved ANN model also gives higher estimation accuracy than those results in the literature. Finally, partial dependence plot 2-D was used for sensitivity analysis within the ANN algorithm to investigate the effect of coupled input variables on the estimated residual friction angle of the soil. It was found that A-line value, clay fraction, and massive minerals are the most important input parameters influencing the residual friction angle.
doi_str_mv 10.1007/s00521-022-07547-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726619043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726619043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOPidOxqriS6rapbuVuHbqKiTFdpD670kJEhvTDfc-7-keQu45PHIA9RQBMsEZCMFAZVIxuCAzLhEZQlZckhmUclznEq_JTYwHAJB5kc3I5r37sjH5pkq-72jv6GK9plUwe5-sSUOw1PWBHoPdeZN819Bgo98NVUtjCrZr0v4MmbY60dj79pZcuaqN9u53zsn25Xm7fGOrzev7crFiBnmZWKaELUuOTjjjnBWyrGWG9U7JCpw1tVDI0SJymXFVS65ACYdFjqosFCqck4ep9hj6z2F8QB_6IXTjRS2UyHNewvj8nIgpZUIfY7BOH4P_qMJJc9Bnb3rypkdv-sebhhHCCYpjuGts-Kv-h_oGmCNvSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726619043</pqid></control><display><type>article</type><title>Investigation of ANN architecture for predicting residual strength of clay soil</title><source>Springer Nature</source><creator>Tran, Van Quan ; Dang, Viet Quoc ; Do, Hai Quan ; Ho, Lanh Si</creator><creatorcontrib>Tran, Van Quan ; Dang, Viet Quoc ; Do, Hai Quan ; Ho, Lanh Si</creatorcontrib><description>This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive minerals, mica, kaolinite, and smectite, in which the output is the residual friction angle. The ANN model was developed by extensively analyzing a number of hidden layers and number of neurons in every layer, incorporating a statistical investigation of the model performance. The obtained results indicate that the ANN model is an outperformed and promising method based on various well-known indicators such as correlation coefficient, mean absolute error, and root mean square error. The achieved ANN model also gives higher estimation accuracy than those results in the literature. Finally, partial dependence plot 2-D was used for sensitivity analysis within the ANN algorithm to investigate the effect of coupled input variables on the estimated residual friction angle of the soil. It was found that A-line value, clay fraction, and massive minerals are the most important input parameters influencing the residual friction angle.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07547-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Clay minerals ; Clay soils ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Correlation coefficients ; Data Mining and Knowledge Discovery ; Estimation ; Friction ; Image Processing and Computer Vision ; Kaolinite ; Liquid limits ; Mathematical models ; Mica ; Original Article ; Parameters ; Probability and Statistics in Computer Science ; Residual strength ; Sensitivity analysis ; Smectites ; Soil strength ; Soils ; Two dimensional analysis</subject><ispartof>Neural computing &amp; applications, 2022-11, Vol.34 (21), p.19253-19268</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373</citedby><cites>FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373</cites><orcidid>0000-0002-4157-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tran, Van Quan</creatorcontrib><creatorcontrib>Dang, Viet Quoc</creatorcontrib><creatorcontrib>Do, Hai Quan</creatorcontrib><creatorcontrib>Ho, Lanh Si</creatorcontrib><title>Investigation of ANN architecture for predicting residual strength of clay soil</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive minerals, mica, kaolinite, and smectite, in which the output is the residual friction angle. The ANN model was developed by extensively analyzing a number of hidden layers and number of neurons in every layer, incorporating a statistical investigation of the model performance. The obtained results indicate that the ANN model is an outperformed and promising method based on various well-known indicators such as correlation coefficient, mean absolute error, and root mean square error. The achieved ANN model also gives higher estimation accuracy than those results in the literature. Finally, partial dependence plot 2-D was used for sensitivity analysis within the ANN algorithm to investigate the effect of coupled input variables on the estimated residual friction angle of the soil. It was found that A-line value, clay fraction, and massive minerals are the most important input parameters influencing the residual friction angle.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Clay minerals</subject><subject>Clay soils</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Correlation coefficients</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Estimation</subject><subject>Friction</subject><subject>Image Processing and Computer Vision</subject><subject>Kaolinite</subject><subject>Liquid limits</subject><subject>Mathematical models</subject><subject>Mica</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Probability and Statistics in Computer Science</subject><subject>Residual strength</subject><subject>Sensitivity analysis</subject><subject>Smectites</subject><subject>Soil strength</subject><subject>Soils</subject><subject>Two dimensional analysis</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOPidOxqriS6rapbuVuHbqKiTFdpD670kJEhvTDfc-7-keQu45PHIA9RQBMsEZCMFAZVIxuCAzLhEZQlZckhmUclznEq_JTYwHAJB5kc3I5r37sjH5pkq-72jv6GK9plUwe5-sSUOw1PWBHoPdeZN819Bgo98NVUtjCrZr0v4MmbY60dj79pZcuaqN9u53zsn25Xm7fGOrzev7crFiBnmZWKaELUuOTjjjnBWyrGWG9U7JCpw1tVDI0SJymXFVS65ACYdFjqosFCqck4ep9hj6z2F8QB_6IXTjRS2UyHNewvj8nIgpZUIfY7BOH4P_qMJJc9Bnb3rypkdv-sebhhHCCYpjuGts-Kv-h_oGmCNvSg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Tran, Van Quan</creator><creator>Dang, Viet Quoc</creator><creator>Do, Hai Quan</creator><creator>Ho, Lanh Si</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4157-7717</orcidid></search><sort><creationdate>20221101</creationdate><title>Investigation of ANN architecture for predicting residual strength of clay soil</title><author>Tran, Van Quan ; Dang, Viet Quoc ; Do, Hai Quan ; Ho, Lanh Si</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Clay minerals</topic><topic>Clay soils</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Correlation coefficients</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Estimation</topic><topic>Friction</topic><topic>Image Processing and Computer Vision</topic><topic>Kaolinite</topic><topic>Liquid limits</topic><topic>Mathematical models</topic><topic>Mica</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Probability and Statistics in Computer Science</topic><topic>Residual strength</topic><topic>Sensitivity analysis</topic><topic>Smectites</topic><topic>Soil strength</topic><topic>Soils</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Van Quan</creatorcontrib><creatorcontrib>Dang, Viet Quoc</creatorcontrib><creatorcontrib>Do, Hai Quan</creatorcontrib><creatorcontrib>Ho, Lanh Si</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Van Quan</au><au>Dang, Viet Quoc</au><au>Do, Hai Quan</au><au>Ho, Lanh Si</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of ANN architecture for predicting residual strength of clay soil</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>34</volume><issue>21</issue><spage>19253</spage><epage>19268</epage><pages>19253-19268</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper introduces a developed method of an artificial neural networks (ANN) architecture for estimating the residual strength of clay soil. To implement this purpose, a database of input soil parameters is built, including liquid limit, plasticity index, A-line value, clay fraction, massive minerals, mica, kaolinite, and smectite, in which the output is the residual friction angle. The ANN model was developed by extensively analyzing a number of hidden layers and number of neurons in every layer, incorporating a statistical investigation of the model performance. The obtained results indicate that the ANN model is an outperformed and promising method based on various well-known indicators such as correlation coefficient, mean absolute error, and root mean square error. The achieved ANN model also gives higher estimation accuracy than those results in the literature. Finally, partial dependence plot 2-D was used for sensitivity analysis within the ANN algorithm to investigate the effect of coupled input variables on the estimated residual friction angle of the soil. It was found that A-line value, clay fraction, and massive minerals are the most important input parameters influencing the residual friction angle.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07547-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4157-7717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-11, Vol.34 (21), p.19253-19268
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2726619043
source Springer Nature
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Clay minerals
Clay soils
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Correlation coefficients
Data Mining and Knowledge Discovery
Estimation
Friction
Image Processing and Computer Vision
Kaolinite
Liquid limits
Mathematical models
Mica
Original Article
Parameters
Probability and Statistics in Computer Science
Residual strength
Sensitivity analysis
Smectites
Soil strength
Soils
Two dimensional analysis
title Investigation of ANN architecture for predicting residual strength of clay soil
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20ANN%20architecture%20for%20predicting%20residual%20strength%20of%20clay%20soil&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Tran,%20Van%20Quan&rft.date=2022-11-01&rft.volume=34&rft.issue=21&rft.spage=19253&rft.epage=19268&rft.pages=19253-19268&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07547-0&rft_dat=%3Cproquest_cross%3E2726619043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-572e9913f2fcffe249b453bd74a0fecb27313e3314517b417072f38637987373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726619043&rft_id=info:pmid/&rfr_iscdi=true