Loading…

Polynomial \(D(4)\)-quadruples over Gaussian Integers

A set \(\{a, b, c, d\}\) of four non-zero distinct polynomials in \(\mathbb{Z}[i][X]\) is said to be a Diophantine \(D(4)\)-quadruple if the product of any two of its distinct elements increased by 4 is a square of some polynomial in \(\mathbb{Z}[i][X]\). In this paper we prove that every \(D(4)\)-q...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-08
Main Authors: Trebješanin, Marija Bliznac, Babić, Sanda Bujačić
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Trebješanin, Marija Bliznac
Babić, Sanda Bujačić
description A set \(\{a, b, c, d\}\) of four non-zero distinct polynomials in \(\mathbb{Z}[i][X]\) is said to be a Diophantine \(D(4)\)-quadruple if the product of any two of its distinct elements increased by 4 is a square of some polynomial in \(\mathbb{Z}[i][X]\). In this paper we prove that every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\) is regular, or equivalently that the equation $$(a+b-c-d)^2=(ab+4)(cd+4)$$ holds for every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\).
doi_str_mv 10.48550/arxiv.2210.10575
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2726629377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726629377</sourcerecordid><originalsourceid>FETCH-proquest_journals_27266293773</originalsourceid><addsrcrecordid>eNqNir0KwjAYAIMgWLQP4BZwaYdq-qVp6uz_5uBYKAGjtMSkTZqib28HH8Dp4O4QWqZknRWMkY2w73pYA4wiJYyzCQqA0jQpMoAZCp1rCCGQc2CMBohdjfpo86qFwmW0j7K4jJPOi7v1rZIOm0FafBLeuVpofNG9fErrFmj6EMrJ8Mc5Wh0Pt905aa3pvHR91Rhv9Zgq4JDnsKWc0_-uL7lyOms</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726629377</pqid></control><display><type>article</type><title>Polynomial \(D(4)\)-quadruples over Gaussian Integers</title><source>Publicly Available Content Database</source><creator>Trebješanin, Marija Bliznac ; Babić, Sanda Bujačić</creator><creatorcontrib>Trebješanin, Marija Bliznac ; Babić, Sanda Bujačić</creatorcontrib><description>A set \(\{a, b, c, d\}\) of four non-zero distinct polynomials in \(\mathbb{Z}[i][X]\) is said to be a Diophantine \(D(4)\)-quadruple if the product of any two of its distinct elements increased by 4 is a square of some polynomial in \(\mathbb{Z}[i][X]\). In this paper we prove that every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\) is regular, or equivalently that the equation $$(a+b-c-d)^2=(ab+4)(cd+4)$$ holds for every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2210.10575</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Polynomials</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2726629377?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Trebješanin, Marija Bliznac</creatorcontrib><creatorcontrib>Babić, Sanda Bujačić</creatorcontrib><title>Polynomial \(D(4)\)-quadruples over Gaussian Integers</title><title>arXiv.org</title><description>A set \(\{a, b, c, d\}\) of four non-zero distinct polynomials in \(\mathbb{Z}[i][X]\) is said to be a Diophantine \(D(4)\)-quadruple if the product of any two of its distinct elements increased by 4 is a square of some polynomial in \(\mathbb{Z}[i][X]\). In this paper we prove that every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\) is regular, or equivalently that the equation $$(a+b-c-d)^2=(ab+4)(cd+4)$$ holds for every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\).</description><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNir0KwjAYAIMgWLQP4BZwaYdq-qVp6uz_5uBYKAGjtMSkTZqib28HH8Dp4O4QWqZknRWMkY2w73pYA4wiJYyzCQqA0jQpMoAZCp1rCCGQc2CMBohdjfpo86qFwmW0j7K4jJPOi7v1rZIOm0FafBLeuVpofNG9fErrFmj6EMrJ8Mc5Wh0Pt905aa3pvHR91Rhv9Zgq4JDnsKWc0_-uL7lyOms</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>Trebješanin, Marija Bliznac</creator><creator>Babić, Sanda Bujačić</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230824</creationdate><title>Polynomial \(D(4)\)-quadruples over Gaussian Integers</title><author>Trebješanin, Marija Bliznac ; Babić, Sanda Bujačić</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27266293773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Trebješanin, Marija Bliznac</creatorcontrib><creatorcontrib>Babić, Sanda Bujačić</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trebješanin, Marija Bliznac</au><au>Babić, Sanda Bujačić</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Polynomial \(D(4)\)-quadruples over Gaussian Integers</atitle><jtitle>arXiv.org</jtitle><date>2023-08-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>A set \(\{a, b, c, d\}\) of four non-zero distinct polynomials in \(\mathbb{Z}[i][X]\) is said to be a Diophantine \(D(4)\)-quadruple if the product of any two of its distinct elements increased by 4 is a square of some polynomial in \(\mathbb{Z}[i][X]\). In this paper we prove that every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\) is regular, or equivalently that the equation $$(a+b-c-d)^2=(ab+4)(cd+4)$$ holds for every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2210.10575</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2726629377
source Publicly Available Content Database
subjects Polynomials
title Polynomial \(D(4)\)-quadruples over Gaussian Integers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Polynomial%20%5C(D(4)%5C)-quadruples%20over%20Gaussian%20Integers&rft.jtitle=arXiv.org&rft.au=Trebje%C5%A1anin,%20Marija%20Bliznac&rft.date=2023-08-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2210.10575&rft_dat=%3Cproquest%3E2726629377%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27266293773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726629377&rft_id=info:pmid/&rfr_iscdi=true