Loading…
Tight bounds on the maximal perimeter and the maximal width of convex small polygons
A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with n = 2 s vertices are not known when s ≥ 4 . In this paper, we construct a family of convex small n -gons, n = 2 s and s ≥ 3 , and show that the perimeters and the widths obtained...
Saved in:
Published in: | Journal of global optimization 2022-12, Vol.84 (4), p.1033-1051 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-e7be9b5a237c2426035681b949a60441bc1907ab48a51345caa0a2657be66e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-e7be9b5a237c2426035681b949a60441bc1907ab48a51345caa0a2657be66e63 |
container_end_page | 1051 |
container_issue | 4 |
container_start_page | 1033 |
container_title | Journal of global optimization |
container_volume | 84 |
creator | Bingane, Christian |
description | A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with
n
=
2
s
vertices are not known when
s
≥
4
. In this paper, we construct a family of convex small
n
-gons,
n
=
2
s
and
s
≥
3
, and show that the perimeters and the widths obtained cannot be improved for large
n
by more than
a
/
n
6
and
b
/
n
4
respectively, for certain positive constants
a
and
b
. In addition, assuming that a conjecture of Mossinghoff is true, we formulate the maximal perimeter problem as a nonlinear optimization problem involving trigonometric functions and, for
n
=
2
s
with
3
≤
s
≤
7
, we provide global optimal solutions. |
doi_str_mv | 10.1007/s10898-022-01181-9 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2726687243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A723602067</galeid><sourcerecordid>A723602067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e7be9b5a237c2426035681b949a60441bc1907ab48a51345caa0a2657be66e63</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeA586XpEma4xj-goGX3kPapl1Hl8yk0-2_N1pBvEgOD977fvIeH4RuCSwIgLyPBApVZEBpBoQUJFNnaEa4ZBlVRJyjGSjKMw5ALtFVjFsAUAWnM1SWfbcZceUPronYOzxuLN6ZY78zA97b0O_saAM2rvkz-eibcYN9i2vv3u0Rx9RMeT-cOu_iNbpozRDtzU-do_LxoVw9Z-vXp5fVcp3VjBdjZmVlVcUNZbKmORXAuChIpXJlBOQ5qWqiQJoqLwwnLOe1MWCo4AkTwgo2R3fTt_vg3w42jnrrD8GljZpKKkQhac5SajGlOjNY3bvWj8HU6TV216fzbdun_lJSJoCCkAmgE1AHH2Owrd4nDSacNAH9ZVtPtnWyrb9ta5UgNkExhV1nw-8t_1CfGTqBRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726687243</pqid></control><display><type>article</type><title>Tight bounds on the maximal perimeter and the maximal width of convex small polygons</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Bingane, Christian</creator><creatorcontrib>Bingane, Christian</creatorcontrib><description>A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with
n
=
2
s
vertices are not known when
s
≥
4
. In this paper, we construct a family of convex small
n
-gons,
n
=
2
s
and
s
≥
3
, and show that the perimeters and the widths obtained cannot be improved for large
n
by more than
a
/
n
6
and
b
/
n
4
respectively, for certain positive constants
a
and
b
. In addition, assuming that a conjecture of Mossinghoff is true, we formulate the maximal perimeter problem as a nonlinear optimization problem involving trigonometric functions and, for
n
=
2
s
with
3
≤
s
≤
7
, we provide global optimal solutions.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-022-01181-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Computer Science ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Polygons ; Real Functions ; Trigonometric functions</subject><ispartof>Journal of global optimization, 2022-12, Vol.84 (4), p.1033-1051</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e7be9b5a237c2426035681b949a60441bc1907ab48a51345caa0a2657be66e63</citedby><cites>FETCH-LOGICAL-c358t-e7be9b5a237c2426035681b949a60441bc1907ab48a51345caa0a2657be66e63</cites><orcidid>0000-0002-1980-5146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2726687243/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2726687243?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Bingane, Christian</creatorcontrib><title>Tight bounds on the maximal perimeter and the maximal width of convex small polygons</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with
n
=
2
s
vertices are not known when
s
≥
4
. In this paper, we construct a family of convex small
n
-gons,
n
=
2
s
and
s
≥
3
, and show that the perimeters and the widths obtained cannot be improved for large
n
by more than
a
/
n
6
and
b
/
n
4
respectively, for certain positive constants
a
and
b
. In addition, assuming that a conjecture of Mossinghoff is true, we formulate the maximal perimeter problem as a nonlinear optimization problem involving trigonometric functions and, for
n
=
2
s
with
3
≤
s
≤
7
, we provide global optimal solutions.</description><subject>Apexes</subject><subject>Computer Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Polygons</subject><subject>Real Functions</subject><subject>Trigonometric functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kM9LwzAUx4MoOKf_gKeA586XpEma4xj-goGX3kPapl1Hl8yk0-2_N1pBvEgOD977fvIeH4RuCSwIgLyPBApVZEBpBoQUJFNnaEa4ZBlVRJyjGSjKMw5ALtFVjFsAUAWnM1SWfbcZceUPronYOzxuLN6ZY78zA97b0O_saAM2rvkz-eibcYN9i2vv3u0Rx9RMeT-cOu_iNbpozRDtzU-do_LxoVw9Z-vXp5fVcp3VjBdjZmVlVcUNZbKmORXAuChIpXJlBOQ5qWqiQJoqLwwnLOe1MWCo4AkTwgo2R3fTt_vg3w42jnrrD8GljZpKKkQhac5SajGlOjNY3bvWj8HU6TV216fzbdun_lJSJoCCkAmgE1AHH2Owrd4nDSacNAH9ZVtPtnWyrb9ta5UgNkExhV1nw-8t_1CfGTqBRQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bingane, Christian</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1980-5146</orcidid></search><sort><creationdate>20221201</creationdate><title>Tight bounds on the maximal perimeter and the maximal width of convex small polygons</title><author>Bingane, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e7be9b5a237c2426035681b949a60441bc1907ab48a51345caa0a2657be66e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Computer Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Polygons</topic><topic>Real Functions</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bingane, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bingane, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight bounds on the maximal perimeter and the maximal width of convex small polygons</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>84</volume><issue>4</issue><spage>1033</spage><epage>1051</epage><pages>1033-1051</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>A small polygon is a polygon of unit diameter. The maximal perimeter and the maximal width of a convex small polygon with
n
=
2
s
vertices are not known when
s
≥
4
. In this paper, we construct a family of convex small
n
-gons,
n
=
2
s
and
s
≥
3
, and show that the perimeters and the widths obtained cannot be improved for large
n
by more than
a
/
n
6
and
b
/
n
4
respectively, for certain positive constants
a
and
b
. In addition, assuming that a conjecture of Mossinghoff is true, we formulate the maximal perimeter problem as a nonlinear optimization problem involving trigonometric functions and, for
n
=
2
s
with
3
≤
s
≤
7
, we provide global optimal solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-022-01181-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1980-5146</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2022-12, Vol.84 (4), p.1033-1051 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2726687243 |
source | ABI/INFORM global; Springer Link |
subjects | Apexes Computer Science Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Polygons Real Functions Trigonometric functions |
title | Tight bounds on the maximal perimeter and the maximal width of convex small polygons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A18%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20bounds%20on%20the%20maximal%20perimeter%20and%20the%20maximal%20width%20of%20convex%20small%20polygons&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Bingane,%20Christian&rft.date=2022-12-01&rft.volume=84&rft.issue=4&rft.spage=1033&rft.epage=1051&rft.pages=1033-1051&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-022-01181-9&rft_dat=%3Cgale_proqu%3EA723602067%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-e7be9b5a237c2426035681b949a60441bc1907ab48a51345caa0a2657be66e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2726687243&rft_id=info:pmid/&rft_galeid=A723602067&rfr_iscdi=true |