Loading…
An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse Transformers
The Transformer has been an indispensable staple in deep learning. However, for real-life applications, it is very challenging to deploy efficient Transformers due to the immense parameters and operations of models. To relieve this burden, exploiting sparsity is an effective approach to accelerate T...
Saved in:
Published in: | IEEE transactions on very large scale integration (VLSI) systems 2022-11, Vol.30 (11), p.1573-1586 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-9489f1f71b056fb3879e48508f5a41c82d93bb1a21e09631d65057738e9a34583 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-9489f1f71b056fb3879e48508f5a41c82d93bb1a21e09631d65057738e9a34583 |
container_end_page | 1586 |
container_issue | 11 |
container_start_page | 1573 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 30 |
creator | Fang, Chao Zhou, Aojun Wang, Zhongfeng |
description | The Transformer has been an indispensable staple in deep learning. However, for real-life applications, it is very challenging to deploy efficient Transformers due to the immense parameters and operations of models. To relieve this burden, exploiting sparsity is an effective approach to accelerate Transformers. Newly emerging Ampere graphics processing units (GPUs) leverage a 2:4 sparsity pattern to achieve model acceleration, while it can hardly meet the diverse algorithm and hardware constraints when deploying models. By contrast, we propose an algorithm-hardware co-optimized framework to flexibly and efficiently accelerate Transformers by utilizing general N:M sparsity patterns. First, from an algorithm perspective, we propose a sparsity inheritance mechanism along with inherited dynamic pruning (IDP) to obtain a series of N:M sparse candidate Transformers rapidly. A model compression scheme is further proposed to significantly reduce the storage requirement for deployment. Second, from a hardware perspective, we present a flexible and efficient hardware architecture, namely, STA, to achieve significant speedup when deploying N:M sparse Transformers. STA features not only a computing engine unifying both sparse-dense and dense-dense matrix multiplications with high computational efficiency but also a scalable softmax module eliminating the latency from intermediate off-chip data communication. Experimental results show that, compared to other methods, N:M sparse Transformers, generated using IDP, achieves an average of 6.7% improvement on accuracy with high training efficiency. Moreover, STA can achieve 14.47\times and 11.33\times speedups compared to Intel i9-9900X and NVIDIA RTX 2080 Ti, respectively, and perform 2.00 \,\,\sim 19.47 \times faster inference than the state-of-the-art field-programmable gate array (FPGA)-based accelerators for Transformers. |
doi_str_mv | 10.1109/TVLSI.2022.3197282 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2727044909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9857911</ieee_id><sourcerecordid>2727044909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-9489f1f71b056fb3879e48508f5a41c82d93bb1a21e09631d65057738e9a34583</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-BSiXNHnDRNwq2aGJs02GEb1yht09GxfuB0muDX0zGEL_bhfWz5IeQW6AiA6ofV23w5GzHK2IiDlkyxMzIAIWSo-zrvZxrzUDGgl-TK-y2lEEWaDsg6qYNkt2mw7N6rcGoxP1h0wbgJF21XVuW3y4MJ2sodGvwIigaDJMvczqHtynoTvD6-BMvWonfBCm3t-0Dl0F-Ti8LuvLv560OynjytxtNwvniejZN5mDEtulBHShdQSEipiIuUK6ldpARVhbARZIrlmqcpWAaO6phDHgsqpOTKacsjofiQ3J_2tth87p3vzLbZY92fNEwySY8_6j7FTqkMG-_RFabFsrL4ZYCaoz7zq88c9Zk_fT10d4JK59w_oJWQGoD_AHdSaoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727044909</pqid></control><display><type>article</type><title>An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse Transformers</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fang, Chao ; Zhou, Aojun ; Wang, Zhongfeng</creator><creatorcontrib>Fang, Chao ; Zhou, Aojun ; Wang, Zhongfeng</creatorcontrib><description><![CDATA[The Transformer has been an indispensable staple in deep learning. However, for real-life applications, it is very challenging to deploy efficient Transformers due to the immense parameters and operations of models. To relieve this burden, exploiting sparsity is an effective approach to accelerate Transformers. Newly emerging Ampere graphics processing units (GPUs) leverage a 2:4 sparsity pattern to achieve model acceleration, while it can hardly meet the diverse algorithm and hardware constraints when deploying models. By contrast, we propose an algorithm-hardware co-optimized framework to flexibly and efficiently accelerate Transformers by utilizing general N:M sparsity patterns. First, from an algorithm perspective, we propose a sparsity inheritance mechanism along with inherited dynamic pruning (IDP) to obtain a series of N:M sparse candidate Transformers rapidly. A model compression scheme is further proposed to significantly reduce the storage requirement for deployment. Second, from a hardware perspective, we present a flexible and efficient hardware architecture, namely, STA, to achieve significant speedup when deploying N:M sparse Transformers. STA features not only a computing engine unifying both sparse-dense and dense-dense matrix multiplications with high computational efficiency but also a scalable softmax module eliminating the latency from intermediate off-chip data communication. Experimental results show that, compared to other methods, N:M sparse Transformers, generated using IDP, achieves an average of 6.7% improvement on accuracy with high training efficiency. Moreover, STA can achieve <inline-formula> <tex-math notation="LaTeX">14.47\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.33\times </tex-math></inline-formula> speedups compared to Intel i9-9900X and NVIDIA RTX 2080 Ti, respectively, and perform <inline-formula> <tex-math notation="LaTeX">2.00 \,\,\sim 19.47 \times </tex-math></inline-formula> faster inference than the state-of-the-art field-programmable gate array (FPGA)-based accelerators for Transformers.]]></description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2022.3197282</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Algorithm–hardware codesign ; Computational modeling ; Constraint modelling ; Engines ; Field programmable gate arrays ; Graphics processing units ; Hardware ; hardware accelerator ; Machine learning ; model compression ; Network latency ; Optimization ; pruning ; Sparse matrices ; Sparsity ; Transformer ; Transformers</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2022-11, Vol.30 (11), p.1573-1586</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-9489f1f71b056fb3879e48508f5a41c82d93bb1a21e09631d65057738e9a34583</citedby><cites>FETCH-LOGICAL-c295t-9489f1f71b056fb3879e48508f5a41c82d93bb1a21e09631d65057738e9a34583</cites><orcidid>0000-0002-7227-4786 ; 0000-0002-4742-8624 ; 0000-0003-3430-1189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9857911$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Zhou, Aojun</creatorcontrib><creatorcontrib>Wang, Zhongfeng</creatorcontrib><title>An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse Transformers</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description><![CDATA[The Transformer has been an indispensable staple in deep learning. However, for real-life applications, it is very challenging to deploy efficient Transformers due to the immense parameters and operations of models. To relieve this burden, exploiting sparsity is an effective approach to accelerate Transformers. Newly emerging Ampere graphics processing units (GPUs) leverage a 2:4 sparsity pattern to achieve model acceleration, while it can hardly meet the diverse algorithm and hardware constraints when deploying models. By contrast, we propose an algorithm-hardware co-optimized framework to flexibly and efficiently accelerate Transformers by utilizing general N:M sparsity patterns. First, from an algorithm perspective, we propose a sparsity inheritance mechanism along with inherited dynamic pruning (IDP) to obtain a series of N:M sparse candidate Transformers rapidly. A model compression scheme is further proposed to significantly reduce the storage requirement for deployment. Second, from a hardware perspective, we present a flexible and efficient hardware architecture, namely, STA, to achieve significant speedup when deploying N:M sparse Transformers. STA features not only a computing engine unifying both sparse-dense and dense-dense matrix multiplications with high computational efficiency but also a scalable softmax module eliminating the latency from intermediate off-chip data communication. Experimental results show that, compared to other methods, N:M sparse Transformers, generated using IDP, achieves an average of 6.7% improvement on accuracy with high training efficiency. Moreover, STA can achieve <inline-formula> <tex-math notation="LaTeX">14.47\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.33\times </tex-math></inline-formula> speedups compared to Intel i9-9900X and NVIDIA RTX 2080 Ti, respectively, and perform <inline-formula> <tex-math notation="LaTeX">2.00 \,\,\sim 19.47 \times </tex-math></inline-formula> faster inference than the state-of-the-art field-programmable gate array (FPGA)-based accelerators for Transformers.]]></description><subject>Algorithms</subject><subject>Algorithm–hardware codesign</subject><subject>Computational modeling</subject><subject>Constraint modelling</subject><subject>Engines</subject><subject>Field programmable gate arrays</subject><subject>Graphics processing units</subject><subject>Hardware</subject><subject>hardware accelerator</subject><subject>Machine learning</subject><subject>model compression</subject><subject>Network latency</subject><subject>Optimization</subject><subject>pruning</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>Transformer</subject><subject>Transformers</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEEmPwB-BSiXNHnDRNwq2aGJs02GEb1yht09GxfuB0muDX0zGEL_bhfWz5IeQW6AiA6ofV23w5GzHK2IiDlkyxMzIAIWSo-zrvZxrzUDGgl-TK-y2lEEWaDsg6qYNkt2mw7N6rcGoxP1h0wbgJF21XVuW3y4MJ2sodGvwIigaDJMvczqHtynoTvD6-BMvWonfBCm3t-0Dl0F-Ti8LuvLv560OynjytxtNwvniejZN5mDEtulBHShdQSEipiIuUK6ldpARVhbARZIrlmqcpWAaO6phDHgsqpOTKacsjofiQ3J_2tth87p3vzLbZY92fNEwySY8_6j7FTqkMG-_RFabFsrL4ZYCaoz7zq88c9Zk_fT10d4JK59w_oJWQGoD_AHdSaoA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Fang, Chao</creator><creator>Zhou, Aojun</creator><creator>Wang, Zhongfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7227-4786</orcidid><orcidid>https://orcid.org/0000-0002-4742-8624</orcidid><orcidid>https://orcid.org/0000-0003-3430-1189</orcidid></search><sort><creationdate>20221101</creationdate><title>An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse Transformers</title><author>Fang, Chao ; Zhou, Aojun ; Wang, Zhongfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-9489f1f71b056fb3879e48508f5a41c82d93bb1a21e09631d65057738e9a34583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Algorithm–hardware codesign</topic><topic>Computational modeling</topic><topic>Constraint modelling</topic><topic>Engines</topic><topic>Field programmable gate arrays</topic><topic>Graphics processing units</topic><topic>Hardware</topic><topic>hardware accelerator</topic><topic>Machine learning</topic><topic>model compression</topic><topic>Network latency</topic><topic>Optimization</topic><topic>pruning</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>Transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Zhou, Aojun</creatorcontrib><creatorcontrib>Wang, Zhongfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Chao</au><au>Zhou, Aojun</au><au>Wang, Zhongfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse Transformers</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>30</volume><issue>11</issue><spage>1573</spage><epage>1586</epage><pages>1573-1586</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>ITCOB4</coden><abstract><![CDATA[The Transformer has been an indispensable staple in deep learning. However, for real-life applications, it is very challenging to deploy efficient Transformers due to the immense parameters and operations of models. To relieve this burden, exploiting sparsity is an effective approach to accelerate Transformers. Newly emerging Ampere graphics processing units (GPUs) leverage a 2:4 sparsity pattern to achieve model acceleration, while it can hardly meet the diverse algorithm and hardware constraints when deploying models. By contrast, we propose an algorithm-hardware co-optimized framework to flexibly and efficiently accelerate Transformers by utilizing general N:M sparsity patterns. First, from an algorithm perspective, we propose a sparsity inheritance mechanism along with inherited dynamic pruning (IDP) to obtain a series of N:M sparse candidate Transformers rapidly. A model compression scheme is further proposed to significantly reduce the storage requirement for deployment. Second, from a hardware perspective, we present a flexible and efficient hardware architecture, namely, STA, to achieve significant speedup when deploying N:M sparse Transformers. STA features not only a computing engine unifying both sparse-dense and dense-dense matrix multiplications with high computational efficiency but also a scalable softmax module eliminating the latency from intermediate off-chip data communication. Experimental results show that, compared to other methods, N:M sparse Transformers, generated using IDP, achieves an average of 6.7% improvement on accuracy with high training efficiency. Moreover, STA can achieve <inline-formula> <tex-math notation="LaTeX">14.47\times </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.33\times </tex-math></inline-formula> speedups compared to Intel i9-9900X and NVIDIA RTX 2080 Ti, respectively, and perform <inline-formula> <tex-math notation="LaTeX">2.00 \,\,\sim 19.47 \times </tex-math></inline-formula> faster inference than the state-of-the-art field-programmable gate array (FPGA)-based accelerators for Transformers.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2022.3197282</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7227-4786</orcidid><orcidid>https://orcid.org/0000-0002-4742-8624</orcidid><orcidid>https://orcid.org/0000-0003-3430-1189</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2022-11, Vol.30 (11), p.1573-1586 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_proquest_journals_2727044909 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Algorithm–hardware codesign Computational modeling Constraint modelling Engines Field programmable gate arrays Graphics processing units Hardware hardware accelerator Machine learning model compression Network latency Optimization pruning Sparse matrices Sparsity Transformer Transformers |
title | An Algorithm-Hardware Co-Optimized Framework for Accelerating N:M Sparse Transformers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Algorithm-Hardware%20Co-Optimized%20Framework%20for%20Accelerating%20N:M%20Sparse%20Transformers&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Fang,%20Chao&rft.date=2022-11-01&rft.volume=30&rft.issue=11&rft.spage=1573&rft.epage=1586&rft.pages=1573-1586&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TVLSI.2022.3197282&rft_dat=%3Cproquest_ieee_%3E2727044909%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-9489f1f71b056fb3879e48508f5a41c82d93bb1a21e09631d65057738e9a34583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727044909&rft_id=info:pmid/&rft_ieee_id=9857911&rfr_iscdi=true |