Loading…

Coarse cubical rigidity

We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Authors: Fioravanti, Elia, Levcovitz, Ivan, Sageev, Michah
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fioravanti, Elia
Levcovitz, Ivan
Sageev, Michah
description We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank \(\geq 3\), we show that all automorphism preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo-Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2727082149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727082149</sourcerecordid><originalsourceid>FETCH-proquest_journals_27270821493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQd85PLCpOVUguTcpMTsxRKMpMz0zJLKnkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MjcwMLI0MTS2PiVAEAM1spxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727082149</pqid></control><display><type>article</type><title>Coarse cubical rigidity</title><source>ProQuest - Publicly Available Content Database</source><creator>Fioravanti, Elia ; Levcovitz, Ivan ; Sageev, Michah</creator><creatorcontrib>Fioravanti, Elia ; Levcovitz, Ivan ; Sageev, Michah</creatorcontrib><description>We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank \(\geq 3\), we show that all automorphism preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo-Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Group theory ; Subgroups</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2727082149?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Fioravanti, Elia</creatorcontrib><creatorcontrib>Levcovitz, Ivan</creatorcontrib><creatorcontrib>Sageev, Michah</creatorcontrib><title>Coarse cubical rigidity</title><title>arXiv.org</title><description>We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank \(\geq 3\), we show that all automorphism preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo-Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.</description><subject>Automorphisms</subject><subject>Group theory</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQd85PLCpOVUguTcpMTsxRKMpMz0zJLKnkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MjcwMLI0MTS2PiVAEAM1spxQ</recordid><startdate>20240622</startdate><enddate>20240622</enddate><creator>Fioravanti, Elia</creator><creator>Levcovitz, Ivan</creator><creator>Sageev, Michah</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240622</creationdate><title>Coarse cubical rigidity</title><author>Fioravanti, Elia ; Levcovitz, Ivan ; Sageev, Michah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27270821493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automorphisms</topic><topic>Group theory</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Fioravanti, Elia</creatorcontrib><creatorcontrib>Levcovitz, Ivan</creatorcontrib><creatorcontrib>Sageev, Michah</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fioravanti, Elia</au><au>Levcovitz, Ivan</au><au>Sageev, Michah</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Coarse cubical rigidity</atitle><jtitle>arXiv.org</jtitle><date>2024-06-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank \(\geq 3\), we show that all automorphism preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo-Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2727082149
source ProQuest - Publicly Available Content Database
subjects Automorphisms
Group theory
Subgroups
title Coarse cubical rigidity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Coarse%20cubical%20rigidity&rft.jtitle=arXiv.org&rft.au=Fioravanti,%20Elia&rft.date=2024-06-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2727082149%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27270821493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727082149&rft_id=info:pmid/&rfr_iscdi=true