Loading…
Coarse cubical rigidity
We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fioravanti, Elia Levcovitz, Ivan Sageev, Michah |
description | We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank \(\geq 3\), we show that all automorphism preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo-Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2727082149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727082149</sourcerecordid><originalsourceid>FETCH-proquest_journals_27270821493</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQd85PLCpOVUguTcpMTsxRKMpMz0zJLKnkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MjcwMLI0MTS2PiVAEAM1spxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727082149</pqid></control><display><type>article</type><title>Coarse cubical rigidity</title><source>ProQuest - Publicly Available Content Database</source><creator>Fioravanti, Elia ; Levcovitz, Ivan ; Sageev, Michah</creator><creatorcontrib>Fioravanti, Elia ; Levcovitz, Ivan ; Sageev, Michah</creatorcontrib><description>We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank \(\geq 3\), we show that all automorphism preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo-Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Group theory ; Subgroups</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2727082149?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Fioravanti, Elia</creatorcontrib><creatorcontrib>Levcovitz, Ivan</creatorcontrib><creatorcontrib>Sageev, Michah</creatorcontrib><title>Coarse cubical rigidity</title><title>arXiv.org</title><description>We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank \(\geq 3\), we show that all automorphism preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo-Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.</description><subject>Automorphisms</subject><subject>Group theory</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQQd85PLCpOVUguTcpMTsxRKMpMz0zJLKnkYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MjcwMLI0MTS2PiVAEAM1spxQ</recordid><startdate>20240622</startdate><enddate>20240622</enddate><creator>Fioravanti, Elia</creator><creator>Levcovitz, Ivan</creator><creator>Sageev, Michah</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240622</creationdate><title>Coarse cubical rigidity</title><author>Fioravanti, Elia ; Levcovitz, Ivan ; Sageev, Michah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27270821493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automorphisms</topic><topic>Group theory</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Fioravanti, Elia</creatorcontrib><creatorcontrib>Levcovitz, Ivan</creatorcontrib><creatorcontrib>Sageev, Michah</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fioravanti, Elia</au><au>Levcovitz, Ivan</au><au>Sageev, Michah</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Coarse cubical rigidity</atitle><jtitle>arXiv.org</jtitle><date>2024-06-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We show that for many right-angled Artin and Coxeter groups, all cocompact cubulations coarsely look the same: they induce the same coarse median structure on the group. These are the first examples of non-hyperbolic groups with this property. For all graph products of finite groups and for Coxeter groups with no irreducible affine parabolic subgroups of rank \(\geq 3\), we show that all automorphism preserve the coarse median structure induced, respectively, by the Davis complex and the Niblo-Reeves cubulation. As a consequence, automorphisms of these groups have nice fixed subgroups and satisfy Nielsen realisation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2727082149 |
source | ProQuest - Publicly Available Content Database |
subjects | Automorphisms Group theory Subgroups |
title | Coarse cubical rigidity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Coarse%20cubical%20rigidity&rft.jtitle=arXiv.org&rft.au=Fioravanti,%20Elia&rft.date=2024-06-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2727082149%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27270821493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727082149&rft_id=info:pmid/&rfr_iscdi=true |