Loading…
Acoustic and Electrical Properties of Tight Rocks: A Comparative Study Between Experiment and Theory
The acoustic-electrical (AE) response of subsurface hydrocarbon reservoirs is highly affected by rock heterogeneity. In particular, the characterization of the microstructure of tight (low-permeability) rocks can be aided by a joint interpretation of AE data. To this purpose, we evaluate cores from...
Saved in:
Published in: | Surveys in geophysics 2022-12, Vol.43 (6), p.1761-1791 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a272t-3123a1909daa67aa8e57597a9d9ed260a64dab7bdac2c09852c793f2f37fa08b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a272t-3123a1909daa67aa8e57597a9d9ed260a64dab7bdac2c09852c793f2f37fa08b3 |
container_end_page | 1791 |
container_issue | 6 |
container_start_page | 1761 |
container_title | Surveys in geophysics |
container_volume | 43 |
creator | Pang, Mengqiang Ba, Jing Carcione, José M. Balcewicz, Martin Yue, Wenzheng Saenger, Erik H. |
description | The acoustic-electrical (AE) response of subsurface hydrocarbon reservoirs is highly affected by rock heterogeneity. In particular, the characterization of the microstructure of tight (low-permeability) rocks can be aided by a joint interpretation of AE data. To this purpose, we evaluate cores from a tight-oil reservoir to obtain the rock mineralogy and pore structure by X-ray diffraction and casting thin sections. Then, ultrasonic and resistivity experiments are performed under different confining pressures to analyze the effects of pores, microcracks and mineralogy on the AE properties. We have developed acoustic and electrical models based on effective-medium theories, and the Cole–Cole and triple-porosity equations, to simulate the response to total and soft (crack) porosities and clay content. The results show that these properties play a significant role. Then, a 3D rock-physical template is built and calibrated by using the core samples and well-log data. The template is applied to tight-oil reservoirs to estimate the rock properties, which are validated with log data. The good match between the predictions and these data indicates that the model can effectively explain the effects of the heterogeneous microstructure on the AE data.
Article Highlights
Tight rock microstructure is analyzed with X-ray diffraction, thin sections and ultrasonic and electrical resistivity tests
Rock acoustic-electrical properties are obtained by the effective-medium and triple-porosity theories
Practical application is given based on an acoustic-electrical rock physics template |
doi_str_mv | 10.1007/s10712-022-09730-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2727091433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727091433</sourcerecordid><originalsourceid>FETCH-LOGICAL-a272t-3123a1909daa67aa8e57597a9d9ed260a64dab7bdac2c09852c793f2f37fa08b3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9WgencnEXS31AQVF6zrcJpl2ajsZk4zaf2_qCO5cXC4XznfO5SB0TsklJURcBUoEZRlhaaTgJOMHaEBzwdOZF4doQGghM85keYxOQlgTQspC8gEyY-26EGuNoTF4urE6-lrDBj9511ofaxuwq_C8Xq4ifnb6LVzjMZ64bQseYv1h8UvszA7f2PhpbYOnX4mqt7aJP4bzlXV-d4qOKtgEe_a7h-j1djqf3Gezx7uHyXiWARMsZpwyDlQSaQAKAVDaXORSgDTSGlYQKEYGFmJhQDNNZJkzLSSvWMVFBaRc8CG66H1b7947G6Jau843KVKlAEEkHXGeVKxXae9C8LZSbfoY_E5RovZtqr5NldpUP22qPcR7KCRxs7T-z_of6hte3XgJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727091433</pqid></control><display><type>article</type><title>Acoustic and Electrical Properties of Tight Rocks: A Comparative Study Between Experiment and Theory</title><source>Springer Nature</source><creator>Pang, Mengqiang ; Ba, Jing ; Carcione, José M. ; Balcewicz, Martin ; Yue, Wenzheng ; Saenger, Erik H.</creator><creatorcontrib>Pang, Mengqiang ; Ba, Jing ; Carcione, José M. ; Balcewicz, Martin ; Yue, Wenzheng ; Saenger, Erik H.</creatorcontrib><description>The acoustic-electrical (AE) response of subsurface hydrocarbon reservoirs is highly affected by rock heterogeneity. In particular, the characterization of the microstructure of tight (low-permeability) rocks can be aided by a joint interpretation of AE data. To this purpose, we evaluate cores from a tight-oil reservoir to obtain the rock mineralogy and pore structure by X-ray diffraction and casting thin sections. Then, ultrasonic and resistivity experiments are performed under different confining pressures to analyze the effects of pores, microcracks and mineralogy on the AE properties. We have developed acoustic and electrical models based on effective-medium theories, and the Cole–Cole and triple-porosity equations, to simulate the response to total and soft (crack) porosities and clay content. The results show that these properties play a significant role. Then, a 3D rock-physical template is built and calibrated by using the core samples and well-log data. The template is applied to tight-oil reservoirs to estimate the rock properties, which are validated with log data. The good match between the predictions and these data indicates that the model can effectively explain the effects of the heterogeneous microstructure on the AE data.
Article Highlights
Tight rock microstructure is analyzed with X-ray diffraction, thin sections and ultrasonic and electrical resistivity tests
Rock acoustic-electrical properties are obtained by the effective-medium and triple-porosity theories
Practical application is given based on an acoustic-electrical rock physics template</description><identifier>ISSN: 0169-3298</identifier><identifier>EISSN: 1573-0956</identifier><identifier>DOI: 10.1007/s10712-022-09730-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acoustic properties ; Acoustics ; Astronomy ; Clay minerals ; Comparative analysis ; Comparative studies ; Cores ; Earth and Environmental Science ; Earth Sciences ; Effective medium theory ; Electrical properties ; Electrical resistivity ; Geophysics/Geodesy ; Heterogeneity ; Hydrocarbons ; Microcracks ; Microstructure ; Mineralogy ; Observations and Techniques ; Oil reservoirs ; Permeability ; Physics ; Porosity ; Reservoirs ; Rock ; Rock properties ; Rocks ; X rays ; X-ray diffraction</subject><ispartof>Surveys in geophysics, 2022-12, Vol.43 (6), p.1761-1791</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a272t-3123a1909daa67aa8e57597a9d9ed260a64dab7bdac2c09852c793f2f37fa08b3</citedby><cites>FETCH-LOGICAL-a272t-3123a1909daa67aa8e57597a9d9ed260a64dab7bdac2c09852c793f2f37fa08b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pang, Mengqiang</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José M.</creatorcontrib><creatorcontrib>Balcewicz, Martin</creatorcontrib><creatorcontrib>Yue, Wenzheng</creatorcontrib><creatorcontrib>Saenger, Erik H.</creatorcontrib><title>Acoustic and Electrical Properties of Tight Rocks: A Comparative Study Between Experiment and Theory</title><title>Surveys in geophysics</title><addtitle>Surv Geophys</addtitle><description>The acoustic-electrical (AE) response of subsurface hydrocarbon reservoirs is highly affected by rock heterogeneity. In particular, the characterization of the microstructure of tight (low-permeability) rocks can be aided by a joint interpretation of AE data. To this purpose, we evaluate cores from a tight-oil reservoir to obtain the rock mineralogy and pore structure by X-ray diffraction and casting thin sections. Then, ultrasonic and resistivity experiments are performed under different confining pressures to analyze the effects of pores, microcracks and mineralogy on the AE properties. We have developed acoustic and electrical models based on effective-medium theories, and the Cole–Cole and triple-porosity equations, to simulate the response to total and soft (crack) porosities and clay content. The results show that these properties play a significant role. Then, a 3D rock-physical template is built and calibrated by using the core samples and well-log data. The template is applied to tight-oil reservoirs to estimate the rock properties, which are validated with log data. The good match between the predictions and these data indicates that the model can effectively explain the effects of the heterogeneous microstructure on the AE data.
Article Highlights
Tight rock microstructure is analyzed with X-ray diffraction, thin sections and ultrasonic and electrical resistivity tests
Rock acoustic-electrical properties are obtained by the effective-medium and triple-porosity theories
Practical application is given based on an acoustic-electrical rock physics template</description><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Astronomy</subject><subject>Clay minerals</subject><subject>Comparative analysis</subject><subject>Comparative studies</subject><subject>Cores</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Effective medium theory</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Geophysics/Geodesy</subject><subject>Heterogeneity</subject><subject>Hydrocarbons</subject><subject>Microcracks</subject><subject>Microstructure</subject><subject>Mineralogy</subject><subject>Observations and Techniques</subject><subject>Oil reservoirs</subject><subject>Permeability</subject><subject>Physics</subject><subject>Porosity</subject><subject>Reservoirs</subject><subject>Rock</subject><subject>Rock properties</subject><subject>Rocks</subject><subject>X rays</subject><subject>X-ray diffraction</subject><issn>0169-3298</issn><issn>1573-0956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9WgencnEXS31AQVF6zrcJpl2ajsZk4zaf2_qCO5cXC4XznfO5SB0TsklJURcBUoEZRlhaaTgJOMHaEBzwdOZF4doQGghM85keYxOQlgTQspC8gEyY-26EGuNoTF4urE6-lrDBj9511ofaxuwq_C8Xq4ifnb6LVzjMZ64bQseYv1h8UvszA7f2PhpbYOnX4mqt7aJP4bzlXV-d4qOKtgEe_a7h-j1djqf3Gezx7uHyXiWARMsZpwyDlQSaQAKAVDaXORSgDTSGlYQKEYGFmJhQDNNZJkzLSSvWMVFBaRc8CG66H1b7947G6Jau843KVKlAEEkHXGeVKxXae9C8LZSbfoY_E5RovZtqr5NldpUP22qPcR7KCRxs7T-z_of6hte3XgJ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Pang, Mengqiang</creator><creator>Ba, Jing</creator><creator>Carcione, José M.</creator><creator>Balcewicz, Martin</creator><creator>Yue, Wenzheng</creator><creator>Saenger, Erik H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20221201</creationdate><title>Acoustic and Electrical Properties of Tight Rocks: A Comparative Study Between Experiment and Theory</title><author>Pang, Mengqiang ; Ba, Jing ; Carcione, José M. ; Balcewicz, Martin ; Yue, Wenzheng ; Saenger, Erik H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a272t-3123a1909daa67aa8e57597a9d9ed260a64dab7bdac2c09852c793f2f37fa08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Astronomy</topic><topic>Clay minerals</topic><topic>Comparative analysis</topic><topic>Comparative studies</topic><topic>Cores</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Effective medium theory</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Geophysics/Geodesy</topic><topic>Heterogeneity</topic><topic>Hydrocarbons</topic><topic>Microcracks</topic><topic>Microstructure</topic><topic>Mineralogy</topic><topic>Observations and Techniques</topic><topic>Oil reservoirs</topic><topic>Permeability</topic><topic>Physics</topic><topic>Porosity</topic><topic>Reservoirs</topic><topic>Rock</topic><topic>Rock properties</topic><topic>Rocks</topic><topic>X rays</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Mengqiang</creatorcontrib><creatorcontrib>Ba, Jing</creatorcontrib><creatorcontrib>Carcione, José M.</creatorcontrib><creatorcontrib>Balcewicz, Martin</creatorcontrib><creatorcontrib>Yue, Wenzheng</creatorcontrib><creatorcontrib>Saenger, Erik H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Surveys in geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Mengqiang</au><au>Ba, Jing</au><au>Carcione, José M.</au><au>Balcewicz, Martin</au><au>Yue, Wenzheng</au><au>Saenger, Erik H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic and Electrical Properties of Tight Rocks: A Comparative Study Between Experiment and Theory</atitle><jtitle>Surveys in geophysics</jtitle><stitle>Surv Geophys</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>43</volume><issue>6</issue><spage>1761</spage><epage>1791</epage><pages>1761-1791</pages><issn>0169-3298</issn><eissn>1573-0956</eissn><abstract>The acoustic-electrical (AE) response of subsurface hydrocarbon reservoirs is highly affected by rock heterogeneity. In particular, the characterization of the microstructure of tight (low-permeability) rocks can be aided by a joint interpretation of AE data. To this purpose, we evaluate cores from a tight-oil reservoir to obtain the rock mineralogy and pore structure by X-ray diffraction and casting thin sections. Then, ultrasonic and resistivity experiments are performed under different confining pressures to analyze the effects of pores, microcracks and mineralogy on the AE properties. We have developed acoustic and electrical models based on effective-medium theories, and the Cole–Cole and triple-porosity equations, to simulate the response to total and soft (crack) porosities and clay content. The results show that these properties play a significant role. Then, a 3D rock-physical template is built and calibrated by using the core samples and well-log data. The template is applied to tight-oil reservoirs to estimate the rock properties, which are validated with log data. The good match between the predictions and these data indicates that the model can effectively explain the effects of the heterogeneous microstructure on the AE data.
Article Highlights
Tight rock microstructure is analyzed with X-ray diffraction, thin sections and ultrasonic and electrical resistivity tests
Rock acoustic-electrical properties are obtained by the effective-medium and triple-porosity theories
Practical application is given based on an acoustic-electrical rock physics template</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10712-022-09730-3</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3298 |
ispartof | Surveys in geophysics, 2022-12, Vol.43 (6), p.1761-1791 |
issn | 0169-3298 1573-0956 |
language | eng |
recordid | cdi_proquest_journals_2727091433 |
source | Springer Nature |
subjects | Acoustic properties Acoustics Astronomy Clay minerals Comparative analysis Comparative studies Cores Earth and Environmental Science Earth Sciences Effective medium theory Electrical properties Electrical resistivity Geophysics/Geodesy Heterogeneity Hydrocarbons Microcracks Microstructure Mineralogy Observations and Techniques Oil reservoirs Permeability Physics Porosity Reservoirs Rock Rock properties Rocks X rays X-ray diffraction |
title | Acoustic and Electrical Properties of Tight Rocks: A Comparative Study Between Experiment and Theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20and%20Electrical%20Properties%20of%20Tight%20Rocks:%20A%20Comparative%20Study%20Between%20Experiment%20and%20Theory&rft.jtitle=Surveys%20in%20geophysics&rft.au=Pang,%20Mengqiang&rft.date=2022-12-01&rft.volume=43&rft.issue=6&rft.spage=1761&rft.epage=1791&rft.pages=1761-1791&rft.issn=0169-3298&rft.eissn=1573-0956&rft_id=info:doi/10.1007/s10712-022-09730-3&rft_dat=%3Cproquest_cross%3E2727091433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a272t-3123a1909daa67aa8e57597a9d9ed260a64dab7bdac2c09852c793f2f37fa08b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727091433&rft_id=info:pmid/&rfr_iscdi=true |