Loading…
Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data
This paper proposes a robust window data envelopment analysis (RWDEA) approach for assessing the dynamic performance of decision making units (DMU) in the presence of panel and uncertain data. To present the RWDEA method, generalized data envelopment analysis (GDEA) model, window analysis (WA) metho...
Saved in:
Published in: | Operational research 2022-11, Vol.22 (5), p.5529-5567 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-5770ae3fa6564cfbcf59b534ec0696ce99682f5548fe18f5a145abfbea089e863 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-5770ae3fa6564cfbcf59b534ec0696ce99682f5548fe18f5a145abfbea089e863 |
container_end_page | 5567 |
container_issue | 5 |
container_start_page | 5529 |
container_title | Operational research |
container_volume | 22 |
creator | Peykani, Pejman Gheidar-Kheljani, Jafar Farzipoor Saen, Reza Mohammadi, Emran |
description | This paper proposes a robust window data envelopment analysis (RWDEA) approach for assessing the dynamic performance of decision making units (DMU) in the presence of panel and uncertain data. To present the RWDEA method, generalized data envelopment analysis (GDEA) model, window analysis (WA) method, and robust optimization (RO) approach are taken into account. The proposed RWDEA approach can be used under different returns to scale (RTS) assumptions, including constant returns to scale (CRS), non-increasing returns to scale (NIRS), non-decreasing returns to scale (NDRS), and variable returns to scale (VRS). Notably, the RWDEA model is linear and can fully rank DMUs under deep uncertainty. To solve and show the validity of the proposed approach, the RWDEA model is implemented for evaluating the efficiency of the intellectual capital of 10 automotive and parts manufacturing companies. The results indicate that the RWDEA approach is applicable and useful for the dynamic efficiency assessment of DMUs in the presence of uncertain panel data. The RWDEA approach, by considering the uncertainties in the data and using panel data, provides more reliable results in comparison with the classical DEA models. |
doi_str_mv | 10.1007/s12351-022-00729-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2727092764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727092764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5770ae3fa6564cfbcf59b534ec0696ce99682f5548fe18f5a145abfbea089e863</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLgsvoHPAU8V5O0-ehRFl0FwYuewzSdaJc2rUnrsvrnjbuCN-cwMw_ee8y8LLtg9IpRqq4j44VgOeU8T5BXuTrKFkxLmTNBxXHaGa1yroU-zc5j3NBUBVe61Ivsa40eA3TtJzYkDPUcJ7JtfTNsSQMTEPQf2A1jj34i4KHbxTYSGMcwgH0jbgik2XnoW0tGDAn24C2SHiHOAfeq2TcYUrcYJmg9GcFjtzc_y04cdBHPf-cye7m7fV7d549P64fVzWNuCyWnXChFAQsHUsjSuto6UdWiKNFSWUmLVSU1d0KU2iHTTgArBdSuRqC6Qi2LZXZ58E1Xv88YJ7MZ5pCeiYYrrmjFlSwTix9YNgwxBnRmDG0PYWcYNT85m0POJuVs9jkblUTFQRQT2b9i-LP-R_UNYXeDjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727092764</pqid></control><display><type>article</type><title>Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Peykani, Pejman ; Gheidar-Kheljani, Jafar ; Farzipoor Saen, Reza ; Mohammadi, Emran</creator><creatorcontrib>Peykani, Pejman ; Gheidar-Kheljani, Jafar ; Farzipoor Saen, Reza ; Mohammadi, Emran</creatorcontrib><description>This paper proposes a robust window data envelopment analysis (RWDEA) approach for assessing the dynamic performance of decision making units (DMU) in the presence of panel and uncertain data. To present the RWDEA method, generalized data envelopment analysis (GDEA) model, window analysis (WA) method, and robust optimization (RO) approach are taken into account. The proposed RWDEA approach can be used under different returns to scale (RTS) assumptions, including constant returns to scale (CRS), non-increasing returns to scale (NIRS), non-decreasing returns to scale (NDRS), and variable returns to scale (VRS). Notably, the RWDEA model is linear and can fully rank DMUs under deep uncertainty. To solve and show the validity of the proposed approach, the RWDEA model is implemented for evaluating the efficiency of the intellectual capital of 10 automotive and parts manufacturing companies. The results indicate that the RWDEA approach is applicable and useful for the dynamic efficiency assessment of DMUs in the presence of uncertain panel data. The RWDEA approach, by considering the uncertainties in the data and using panel data, provides more reliable results in comparison with the classical DEA models. </description><identifier>ISSN: 1109-2858</identifier><identifier>EISSN: 1866-1505</identifier><identifier>DOI: 10.1007/s12351-022-00729-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Business and Management ; Computational Intelligence ; Data analysis ; Data envelopment analysis ; Decision analysis ; Decision making ; Longitudinal studies ; Management Science ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Original Paper ; Performance measurement ; Robustness ; Uncertainty</subject><ispartof>Operational research, 2022-11, Vol.22 (5), p.5529-5567</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-5770ae3fa6564cfbcf59b534ec0696ce99682f5548fe18f5a145abfbea089e863</citedby><cites>FETCH-LOGICAL-c376t-5770ae3fa6564cfbcf59b534ec0696ce99682f5548fe18f5a145abfbea089e863</cites><orcidid>0000-0002-0851-6509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2727092764/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2727092764?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74865</link.rule.ids></links><search><creatorcontrib>Peykani, Pejman</creatorcontrib><creatorcontrib>Gheidar-Kheljani, Jafar</creatorcontrib><creatorcontrib>Farzipoor Saen, Reza</creatorcontrib><creatorcontrib>Mohammadi, Emran</creatorcontrib><title>Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data</title><title>Operational research</title><addtitle>Oper Res Int J</addtitle><description>This paper proposes a robust window data envelopment analysis (RWDEA) approach for assessing the dynamic performance of decision making units (DMU) in the presence of panel and uncertain data. To present the RWDEA method, generalized data envelopment analysis (GDEA) model, window analysis (WA) method, and robust optimization (RO) approach are taken into account. The proposed RWDEA approach can be used under different returns to scale (RTS) assumptions, including constant returns to scale (CRS), non-increasing returns to scale (NIRS), non-decreasing returns to scale (NDRS), and variable returns to scale (VRS). Notably, the RWDEA model is linear and can fully rank DMUs under deep uncertainty. To solve and show the validity of the proposed approach, the RWDEA model is implemented for evaluating the efficiency of the intellectual capital of 10 automotive and parts manufacturing companies. The results indicate that the RWDEA approach is applicable and useful for the dynamic efficiency assessment of DMUs in the presence of uncertain panel data. The RWDEA approach, by considering the uncertainties in the data and using panel data, provides more reliable results in comparison with the classical DEA models. </description><subject>Business and Management</subject><subject>Computational Intelligence</subject><subject>Data analysis</subject><subject>Data envelopment analysis</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Longitudinal studies</subject><subject>Management Science</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Performance measurement</subject><subject>Robustness</subject><subject>Uncertainty</subject><issn>1109-2858</issn><issn>1866-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9UE1LxDAQLaLgsvoHPAU8V5O0-ehRFl0FwYuewzSdaJc2rUnrsvrnjbuCN-cwMw_ee8y8LLtg9IpRqq4j44VgOeU8T5BXuTrKFkxLmTNBxXHaGa1yroU-zc5j3NBUBVe61Ivsa40eA3TtJzYkDPUcJ7JtfTNsSQMTEPQf2A1jj34i4KHbxTYSGMcwgH0jbgik2XnoW0tGDAn24C2SHiHOAfeq2TcYUrcYJmg9GcFjtzc_y04cdBHPf-cye7m7fV7d549P64fVzWNuCyWnXChFAQsHUsjSuto6UdWiKNFSWUmLVSU1d0KU2iHTTgArBdSuRqC6Qi2LZXZ58E1Xv88YJ7MZ5pCeiYYrrmjFlSwTix9YNgwxBnRmDG0PYWcYNT85m0POJuVs9jkblUTFQRQT2b9i-LP-R_UNYXeDjA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Peykani, Pejman</creator><creator>Gheidar-Kheljani, Jafar</creator><creator>Farzipoor Saen, Reza</creator><creator>Mohammadi, Emran</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0851-6509</orcidid></search><sort><creationdate>20221101</creationdate><title>Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data</title><author>Peykani, Pejman ; Gheidar-Kheljani, Jafar ; Farzipoor Saen, Reza ; Mohammadi, Emran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5770ae3fa6564cfbcf59b534ec0696ce99682f5548fe18f5a145abfbea089e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Business and Management</topic><topic>Computational Intelligence</topic><topic>Data analysis</topic><topic>Data envelopment analysis</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Longitudinal studies</topic><topic>Management Science</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Performance measurement</topic><topic>Robustness</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peykani, Pejman</creatorcontrib><creatorcontrib>Gheidar-Kheljani, Jafar</creatorcontrib><creatorcontrib>Farzipoor Saen, Reza</creatorcontrib><creatorcontrib>Mohammadi, Emran</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peykani, Pejman</au><au>Gheidar-Kheljani, Jafar</au><au>Farzipoor Saen, Reza</au><au>Mohammadi, Emran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data</atitle><jtitle>Operational research</jtitle><stitle>Oper Res Int J</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>22</volume><issue>5</issue><spage>5529</spage><epage>5567</epage><pages>5529-5567</pages><issn>1109-2858</issn><eissn>1866-1505</eissn><abstract>This paper proposes a robust window data envelopment analysis (RWDEA) approach for assessing the dynamic performance of decision making units (DMU) in the presence of panel and uncertain data. To present the RWDEA method, generalized data envelopment analysis (GDEA) model, window analysis (WA) method, and robust optimization (RO) approach are taken into account. The proposed RWDEA approach can be used under different returns to scale (RTS) assumptions, including constant returns to scale (CRS), non-increasing returns to scale (NIRS), non-decreasing returns to scale (NDRS), and variable returns to scale (VRS). Notably, the RWDEA model is linear and can fully rank DMUs under deep uncertainty. To solve and show the validity of the proposed approach, the RWDEA model is implemented for evaluating the efficiency of the intellectual capital of 10 automotive and parts manufacturing companies. The results indicate that the RWDEA approach is applicable and useful for the dynamic efficiency assessment of DMUs in the presence of uncertain panel data. The RWDEA approach, by considering the uncertainties in the data and using panel data, provides more reliable results in comparison with the classical DEA models. </abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12351-022-00729-7</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-0851-6509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1109-2858 |
ispartof | Operational research, 2022-11, Vol.22 (5), p.5529-5567 |
issn | 1109-2858 1866-1505 |
language | eng |
recordid | cdi_proquest_journals_2727092764 |
source | ABI/INFORM global; Springer Link |
subjects | Business and Management Computational Intelligence Data analysis Data envelopment analysis Decision analysis Decision making Longitudinal studies Management Science Operations Research Operations Research/Decision Theory Optimization Original Paper Performance measurement Robustness Uncertainty |
title | Generalized robust window data envelopment analysis approach for dynamic performance measurement under uncertain panel data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20robust%20window%20data%20envelopment%20analysis%20approach%20for%20dynamic%20performance%20measurement%20under%20uncertain%20panel%20data&rft.jtitle=Operational%20research&rft.au=Peykani,%20Pejman&rft.date=2022-11-01&rft.volume=22&rft.issue=5&rft.spage=5529&rft.epage=5567&rft.pages=5529-5567&rft.issn=1109-2858&rft.eissn=1866-1505&rft_id=info:doi/10.1007/s12351-022-00729-7&rft_dat=%3Cproquest_cross%3E2727092764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-5770ae3fa6564cfbcf59b534ec0696ce99682f5548fe18f5a145abfbea089e863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727092764&rft_id=info:pmid/&rfr_iscdi=true |