Loading…

N-doped Fe2(MoO4)3-decorated MoO3 nanorods via metal–organic framework-involved synthesis as a bifunctional nanoreactor for capturing and catalyzing polysulfides in lithium–sulfur batteries

Shuttling behavior and sluggish redox kinetics of lithium polysulfides (LiPSs) are fundamental reasons hindering the application of lithium–sulfur batteries (LSBs). A functional interlayer, introduced between the electrode and separator, fabricated by materials with efficient polysulfide trapping-ca...

Full description

Saved in:
Bibliographic Details
Published in:New journal of chemistry 2022-09, Vol.46 (41), p.19638-19642
Main Authors: Liu, Zhi Hang, Mao, Xiaoqing, Liu, Xihao, Luo, Yuanyan, Pei Kang Shen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 19642
container_issue 41
container_start_page 19638
container_title New journal of chemistry
container_volume 46
creator Liu, Zhi Hang
Mao, Xiaoqing
Liu, Xihao
Luo, Yuanyan
Pei Kang Shen
description Shuttling behavior and sluggish redox kinetics of lithium polysulfides (LiPSs) are fundamental reasons hindering the application of lithium–sulfur batteries (LSBs). A functional interlayer, introduced between the electrode and separator, fabricated by materials with efficient polysulfide trapping-catalyzing capacity is an available method to alleviate the above problems. In this work, unique N-doped, Fe2(MoO4)3-decorated MoO3 nanorods (N-MoO3@Fe2(MoO4)3) are reported as interlayer materials. The MoO3 component mainly contributes to adsorption and ensures conductivity, while the Fe2(MoO4)3 component is used to further enhance the catalytic activity. In addition, nitrogen doping increases the polarization of the material and hence enhances the adsorption capacity. Combining these advantages of such a heterostructure material, cells with a N-MoO3@Fe2(MoO4)3 coated separator exhibit an ultrahigh initial capacity (1601.4 mA h g−1 at 0.1C) and favorable cycling stability (642.5 mA h g−1 at 1C for 600 cycles with a degradation rate of 0.049% per cycle), achieving effective adsorption and rapid kinetics of LiPSs.
doi_str_mv 10.1039/d2nj03894c
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2727580051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727580051</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-ea47d83d8f38377557792d526d81bfaad53c28dce1440ac721129a976fafbb0c3</originalsourceid><addsrcrecordid>eNotkEtOwzAQhiMEElDYcAJLbGAR8COJkyWqKCAVuum-mvhRXFI72E5RWXEHTsRVOAmuijSjmf-X5hvNZNkFwTcEs-ZWUrvCrG4KcZCdEFY1eUMrcph6UhQ5LovqODsNYYUxIbwiJ9nPSy5drySaKHr17GbFNculEs5DTGYyGLJgnXcyoI0BtFYRut-vb-eXYI1A2sNafTj_lhu7cd0mDYWtja8qmIAgBWqNHqyIxlno9iwFIjqPdEoBfRy8sUsEViaV4NvPnexdtw1Dp41UARmLOhNfzbBOm3fu4FELMSpvVDjLjjR0QZ3_11E2n9zPx4_5dPbwNL6b5n1Tx1xBwWXNZK1ZzTgvS84bKktayZq0GkCWTNBaCpX-hEFwSghtoOGVBt22WLBRdrnH9t69DyrExcoNPt0UFpRTXtYYl4T9AQKzfTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727580051</pqid></control><display><type>article</type><title>N-doped Fe2(MoO4)3-decorated MoO3 nanorods via metal–organic framework-involved synthesis as a bifunctional nanoreactor for capturing and catalyzing polysulfides in lithium–sulfur batteries</title><source>Royal Society of Chemistry</source><creator>Liu, Zhi Hang ; Mao, Xiaoqing ; Liu, Xihao ; Luo, Yuanyan ; Pei Kang Shen</creator><creatorcontrib>Liu, Zhi Hang ; Mao, Xiaoqing ; Liu, Xihao ; Luo, Yuanyan ; Pei Kang Shen</creatorcontrib><description>Shuttling behavior and sluggish redox kinetics of lithium polysulfides (LiPSs) are fundamental reasons hindering the application of lithium–sulfur batteries (LSBs). A functional interlayer, introduced between the electrode and separator, fabricated by materials with efficient polysulfide trapping-catalyzing capacity is an available method to alleviate the above problems. In this work, unique N-doped, Fe2(MoO4)3-decorated MoO3 nanorods (N-MoO3@Fe2(MoO4)3) are reported as interlayer materials. The MoO3 component mainly contributes to adsorption and ensures conductivity, while the Fe2(MoO4)3 component is used to further enhance the catalytic activity. In addition, nitrogen doping increases the polarization of the material and hence enhances the adsorption capacity. Combining these advantages of such a heterostructure material, cells with a N-MoO3@Fe2(MoO4)3 coated separator exhibit an ultrahigh initial capacity (1601.4 mA h g−1 at 0.1C) and favorable cycling stability (642.5 mA h g−1 at 1C for 600 cycles with a degradation rate of 0.049% per cycle), achieving effective adsorption and rapid kinetics of LiPSs.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d2nj03894c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Catalytic activity ; Heterostructures ; Interlayers ; Kinetics ; Lithium ; Lithium sulfur batteries ; Metal-organic frameworks ; Nanorods ; Nitrogen ; Polysulfides ; Separators</subject><ispartof>New journal of chemistry, 2022-09, Vol.46 (41), p.19638-19642</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Zhi Hang</creatorcontrib><creatorcontrib>Mao, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Xihao</creatorcontrib><creatorcontrib>Luo, Yuanyan</creatorcontrib><creatorcontrib>Pei Kang Shen</creatorcontrib><title>N-doped Fe2(MoO4)3-decorated MoO3 nanorods via metal–organic framework-involved synthesis as a bifunctional nanoreactor for capturing and catalyzing polysulfides in lithium–sulfur batteries</title><title>New journal of chemistry</title><description>Shuttling behavior and sluggish redox kinetics of lithium polysulfides (LiPSs) are fundamental reasons hindering the application of lithium–sulfur batteries (LSBs). A functional interlayer, introduced between the electrode and separator, fabricated by materials with efficient polysulfide trapping-catalyzing capacity is an available method to alleviate the above problems. In this work, unique N-doped, Fe2(MoO4)3-decorated MoO3 nanorods (N-MoO3@Fe2(MoO4)3) are reported as interlayer materials. The MoO3 component mainly contributes to adsorption and ensures conductivity, while the Fe2(MoO4)3 component is used to further enhance the catalytic activity. In addition, nitrogen doping increases the polarization of the material and hence enhances the adsorption capacity. Combining these advantages of such a heterostructure material, cells with a N-MoO3@Fe2(MoO4)3 coated separator exhibit an ultrahigh initial capacity (1601.4 mA h g−1 at 0.1C) and favorable cycling stability (642.5 mA h g−1 at 1C for 600 cycles with a degradation rate of 0.049% per cycle), achieving effective adsorption and rapid kinetics of LiPSs.</description><subject>Adsorption</subject><subject>Catalytic activity</subject><subject>Heterostructures</subject><subject>Interlayers</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Metal-organic frameworks</subject><subject>Nanorods</subject><subject>Nitrogen</subject><subject>Polysulfides</subject><subject>Separators</subject><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAQhiMEElDYcAJLbGAR8COJkyWqKCAVuum-mvhRXFI72E5RWXEHTsRVOAmuijSjmf-X5hvNZNkFwTcEs-ZWUrvCrG4KcZCdEFY1eUMrcph6UhQ5LovqODsNYYUxIbwiJ9nPSy5drySaKHr17GbFNculEs5DTGYyGLJgnXcyoI0BtFYRut-vb-eXYI1A2sNafTj_lhu7cd0mDYWtja8qmIAgBWqNHqyIxlno9iwFIjqPdEoBfRy8sUsEViaV4NvPnexdtw1Dp41UARmLOhNfzbBOm3fu4FELMSpvVDjLjjR0QZ3_11E2n9zPx4_5dPbwNL6b5n1Tx1xBwWXNZK1ZzTgvS84bKktayZq0GkCWTNBaCpX-hEFwSghtoOGVBt22WLBRdrnH9t69DyrExcoNPt0UFpRTXtYYl4T9AQKzfTo</recordid><startdate>20220913</startdate><enddate>20220913</enddate><creator>Liu, Zhi Hang</creator><creator>Mao, Xiaoqing</creator><creator>Liu, Xihao</creator><creator>Luo, Yuanyan</creator><creator>Pei Kang Shen</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H9R</scope><scope>JG9</scope><scope>KA0</scope></search><sort><creationdate>20220913</creationdate><title>N-doped Fe2(MoO4)3-decorated MoO3 nanorods via metal–organic framework-involved synthesis as a bifunctional nanoreactor for capturing and catalyzing polysulfides in lithium–sulfur batteries</title><author>Liu, Zhi Hang ; Mao, Xiaoqing ; Liu, Xihao ; Luo, Yuanyan ; Pei Kang Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-ea47d83d8f38377557792d526d81bfaad53c28dce1440ac721129a976fafbb0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Catalytic activity</topic><topic>Heterostructures</topic><topic>Interlayers</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Metal-organic frameworks</topic><topic>Nanorods</topic><topic>Nitrogen</topic><topic>Polysulfides</topic><topic>Separators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhi Hang</creatorcontrib><creatorcontrib>Mao, Xiaoqing</creatorcontrib><creatorcontrib>Liu, Xihao</creatorcontrib><creatorcontrib>Luo, Yuanyan</creatorcontrib><creatorcontrib>Pei Kang Shen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Illustrata: Natural Sciences</collection><collection>Materials Research Database</collection><collection>ProQuest Illustrata: Technology Collection</collection><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhi Hang</au><au>Mao, Xiaoqing</au><au>Liu, Xihao</au><au>Luo, Yuanyan</au><au>Pei Kang Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-doped Fe2(MoO4)3-decorated MoO3 nanorods via metal–organic framework-involved synthesis as a bifunctional nanoreactor for capturing and catalyzing polysulfides in lithium–sulfur batteries</atitle><jtitle>New journal of chemistry</jtitle><date>2022-09-13</date><risdate>2022</risdate><volume>46</volume><issue>41</issue><spage>19638</spage><epage>19642</epage><pages>19638-19642</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Shuttling behavior and sluggish redox kinetics of lithium polysulfides (LiPSs) are fundamental reasons hindering the application of lithium–sulfur batteries (LSBs). A functional interlayer, introduced between the electrode and separator, fabricated by materials with efficient polysulfide trapping-catalyzing capacity is an available method to alleviate the above problems. In this work, unique N-doped, Fe2(MoO4)3-decorated MoO3 nanorods (N-MoO3@Fe2(MoO4)3) are reported as interlayer materials. The MoO3 component mainly contributes to adsorption and ensures conductivity, while the Fe2(MoO4)3 component is used to further enhance the catalytic activity. In addition, nitrogen doping increases the polarization of the material and hence enhances the adsorption capacity. Combining these advantages of such a heterostructure material, cells with a N-MoO3@Fe2(MoO4)3 coated separator exhibit an ultrahigh initial capacity (1601.4 mA h g−1 at 0.1C) and favorable cycling stability (642.5 mA h g−1 at 1C for 600 cycles with a degradation rate of 0.049% per cycle), achieving effective adsorption and rapid kinetics of LiPSs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2nj03894c</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2022-09, Vol.46 (41), p.19638-19642
issn 1144-0546
1369-9261
language eng
recordid cdi_proquest_journals_2727580051
source Royal Society of Chemistry
subjects Adsorption
Catalytic activity
Heterostructures
Interlayers
Kinetics
Lithium
Lithium sulfur batteries
Metal-organic frameworks
Nanorods
Nitrogen
Polysulfides
Separators
title N-doped Fe2(MoO4)3-decorated MoO3 nanorods via metal–organic framework-involved synthesis as a bifunctional nanoreactor for capturing and catalyzing polysulfides in lithium–sulfur batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-doped%20Fe2(MoO4)3-decorated%20MoO3%20nanorods%20via%20metal%E2%80%93organic%20framework-involved%20synthesis%20as%20a%20bifunctional%20nanoreactor%20for%20capturing%20and%20catalyzing%20polysulfides%20in%20lithium%E2%80%93sulfur%20batteries&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Liu,%20Zhi%20Hang&rft.date=2022-09-13&rft.volume=46&rft.issue=41&rft.spage=19638&rft.epage=19642&rft.pages=19638-19642&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d2nj03894c&rft_dat=%3Cproquest%3E2727580051%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p98t-ea47d83d8f38377557792d526d81bfaad53c28dce1440ac721129a976fafbb0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727580051&rft_id=info:pmid/&rfr_iscdi=true