Loading…

Remote Sensing of Groundwater: Current Capabilities and Future Directions

Globally, groundwater represents a critical natural resource that is affected by changes in natural supply and renewal, as well as by increasing human demand and consumption. However, despite its critical role, groundwater is difficult to accurately quantify as it is beneath the Earth surface. Here,...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2022-10, Vol.58 (10), p.n/a
Main Authors: Adams, Kyra H., Reager, John T., Rosen, Paul, Wiese, David N., Farr, Tom G., Rao, Shanti, Haines, Bruce J., Argus, Donald F., Liu, Zhen, Smith, Ryan, Famiglietti, James S., Rodell, Matthew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3680-595a24fcc24420c6271592e2872e7c10782490d954528129293fac8b5928ce6a3
cites cdi_FETCH-LOGICAL-a3680-595a24fcc24420c6271592e2872e7c10782490d954528129293fac8b5928ce6a3
container_end_page n/a
container_issue 10
container_start_page
container_title Water resources research
container_volume 58
creator Adams, Kyra H.
Reager, John T.
Rosen, Paul
Wiese, David N.
Farr, Tom G.
Rao, Shanti
Haines, Bruce J.
Argus, Donald F.
Liu, Zhen
Smith, Ryan
Famiglietti, James S.
Rodell, Matthew
description Globally, groundwater represents a critical natural resource that is affected by changes in natural supply and renewal, as well as by increasing human demand and consumption. However, despite its critical role, groundwater is difficult to accurately quantify as it is beneath the Earth surface. Here, we review several state‐of‐the‐art remote sensing techniques useful for local‐ to global‐scale groundwater monitoring and assessment, including proxies for groundwater extraction. These include inferring changes in subsurface water from mass changes using gravitational measurements, and analyzing changes in the Earth surface height using Interferometric Synthetic Aperture Radar, Light Detection and Ranging, Airborne Electromagnetic Systems, and satellite altimetry. Remote sensing information is often used in tandem with ground‐based observations such as hydraulic head in wells, Global Navigational Satellite System monitoring, and numerical modeling to complement the space‐based approaches. In the future, fusing different remote sensing techniques capable of operating in various environments will yield additional insight on the state and rate of use for groundwater across the globe. Key Points Accurately measuring and monitoring groundwater storage and fluxes is critical for water, food, and energy security Remote sensing approaches such as gravitational measurements, Interferometric Synthetic Aperture Radar, Global Navigational Satellite System, lidar altimetry, and Airborne Electromagnetic Systems can yield indirect yet valuable information about groundwater Fusing multiple remotely sensed data sets or employing other tools such as numerical models increase the applicability of individual approaches
doi_str_mv 10.1029/2022WR032219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2728474922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728474922</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3680-595a24fcc24420c6271592e2872e7c10782490d954528129293fac8b5928ce6a3</originalsourceid><addsrcrecordid>eNp90MFLwzAYBfAgCs7pzT8g4NVq8iVtEm9S3RwMhKrsGLLsq2Rs7Uxaxv57K_PgydO7_HgPHiHXnN1xBuYeGMCiYgKAmxMy4kbKTBklTsmIMSkyLow6JxcprRnjMi_UiMwq3LYd0jdsUmg-aVvTaWz7ZrV3HcYHWvYxYtPR0u3cMmxCFzBR16zopO_6iPQpRPRdaJt0Sc5qt0l49Ztj8jF5fi9fsvnrdFY-zjMnCs2y3OQOZO09SAnMF6B4bgBBK0DlOVMapGErk8scNAcDRtTO6-WAtMfCiTG5OfbuYvvVY-rsuu1jM0xaUKClkgZgULdH5WObUsTa7mLYuniwnNmfs-zfswYujnwfNnj419pFVVZQgGTiG7sBaOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728474922</pqid></control><display><type>article</type><title>Remote Sensing of Groundwater: Current Capabilities and Future Directions</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Adams, Kyra H. ; Reager, John T. ; Rosen, Paul ; Wiese, David N. ; Farr, Tom G. ; Rao, Shanti ; Haines, Bruce J. ; Argus, Donald F. ; Liu, Zhen ; Smith, Ryan ; Famiglietti, James S. ; Rodell, Matthew</creator><creatorcontrib>Adams, Kyra H. ; Reager, John T. ; Rosen, Paul ; Wiese, David N. ; Farr, Tom G. ; Rao, Shanti ; Haines, Bruce J. ; Argus, Donald F. ; Liu, Zhen ; Smith, Ryan ; Famiglietti, James S. ; Rodell, Matthew</creatorcontrib><description>Globally, groundwater represents a critical natural resource that is affected by changes in natural supply and renewal, as well as by increasing human demand and consumption. However, despite its critical role, groundwater is difficult to accurately quantify as it is beneath the Earth surface. Here, we review several state‐of‐the‐art remote sensing techniques useful for local‐ to global‐scale groundwater monitoring and assessment, including proxies for groundwater extraction. These include inferring changes in subsurface water from mass changes using gravitational measurements, and analyzing changes in the Earth surface height using Interferometric Synthetic Aperture Radar, Light Detection and Ranging, Airborne Electromagnetic Systems, and satellite altimetry. Remote sensing information is often used in tandem with ground‐based observations such as hydraulic head in wells, Global Navigational Satellite System monitoring, and numerical modeling to complement the space‐based approaches. In the future, fusing different remote sensing techniques capable of operating in various environments will yield additional insight on the state and rate of use for groundwater across the globe. Key Points Accurately measuring and monitoring groundwater storage and fluxes is critical for water, food, and energy security Remote sensing approaches such as gravitational measurements, Interferometric Synthetic Aperture Radar, Global Navigational Satellite System, lidar altimetry, and Airborne Electromagnetic Systems can yield indirect yet valuable information about groundwater Fusing multiple remotely sensed data sets or employing other tools such as numerical models increase the applicability of individual approaches</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2022WR032219</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Airborne radar ; Airborne sensing ; Altimetry ; aquifer ; Earth surface ; GNSS ; GPS ; GRACE ; Gravity ; Ground-based observation ; Groundwater ; groundwater modeling ; InSAR ; Interferometric synthetic aperture radar ; Lidar ; Monitoring ; Natural resources ; Navigational satellites ; Piezometric head ; Radar detection ; Remote sensing ; Remote sensing techniques ; Renewal ; SAR (radar) ; Satellite altimetry ; Sea surface ; Sensing techniques ; Subsurface water ; Synthetic aperture radar ; Water monitoring</subject><ispartof>Water resources research, 2022-10, Vol.58 (10), p.n/a</ispartof><rights>2022. American Geophysical Union. All Rights Reserved.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3680-595a24fcc24420c6271592e2872e7c10782490d954528129293fac8b5928ce6a3</citedby><cites>FETCH-LOGICAL-a3680-595a24fcc24420c6271592e2872e7c10782490d954528129293fac8b5928ce6a3</cites><orcidid>0000-0003-0106-7437 ; 0000-0002-9759-2019 ; 0000-0001-7035-0514 ; 0000-0002-3747-6868 ; 0000-0002-2770-4257 ; 0000-0002-6313-823X ; 0000-0001-5406-2096 ; 0000-0001-7575-2520 ; 0000-0002-4558-6004 ; 0000-0002-6053-5379 ; 0000-0001-8560-6981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022WR032219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022WR032219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids></links><search><creatorcontrib>Adams, Kyra H.</creatorcontrib><creatorcontrib>Reager, John T.</creatorcontrib><creatorcontrib>Rosen, Paul</creatorcontrib><creatorcontrib>Wiese, David N.</creatorcontrib><creatorcontrib>Farr, Tom G.</creatorcontrib><creatorcontrib>Rao, Shanti</creatorcontrib><creatorcontrib>Haines, Bruce J.</creatorcontrib><creatorcontrib>Argus, Donald F.</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Smith, Ryan</creatorcontrib><creatorcontrib>Famiglietti, James S.</creatorcontrib><creatorcontrib>Rodell, Matthew</creatorcontrib><title>Remote Sensing of Groundwater: Current Capabilities and Future Directions</title><title>Water resources research</title><description>Globally, groundwater represents a critical natural resource that is affected by changes in natural supply and renewal, as well as by increasing human demand and consumption. However, despite its critical role, groundwater is difficult to accurately quantify as it is beneath the Earth surface. Here, we review several state‐of‐the‐art remote sensing techniques useful for local‐ to global‐scale groundwater monitoring and assessment, including proxies for groundwater extraction. These include inferring changes in subsurface water from mass changes using gravitational measurements, and analyzing changes in the Earth surface height using Interferometric Synthetic Aperture Radar, Light Detection and Ranging, Airborne Electromagnetic Systems, and satellite altimetry. Remote sensing information is often used in tandem with ground‐based observations such as hydraulic head in wells, Global Navigational Satellite System monitoring, and numerical modeling to complement the space‐based approaches. In the future, fusing different remote sensing techniques capable of operating in various environments will yield additional insight on the state and rate of use for groundwater across the globe. Key Points Accurately measuring and monitoring groundwater storage and fluxes is critical for water, food, and energy security Remote sensing approaches such as gravitational measurements, Interferometric Synthetic Aperture Radar, Global Navigational Satellite System, lidar altimetry, and Airborne Electromagnetic Systems can yield indirect yet valuable information about groundwater Fusing multiple remotely sensed data sets or employing other tools such as numerical models increase the applicability of individual approaches</description><subject>Airborne radar</subject><subject>Airborne sensing</subject><subject>Altimetry</subject><subject>aquifer</subject><subject>Earth surface</subject><subject>GNSS</subject><subject>GPS</subject><subject>GRACE</subject><subject>Gravity</subject><subject>Ground-based observation</subject><subject>Groundwater</subject><subject>groundwater modeling</subject><subject>InSAR</subject><subject>Interferometric synthetic aperture radar</subject><subject>Lidar</subject><subject>Monitoring</subject><subject>Natural resources</subject><subject>Navigational satellites</subject><subject>Piezometric head</subject><subject>Radar detection</subject><subject>Remote sensing</subject><subject>Remote sensing techniques</subject><subject>Renewal</subject><subject>SAR (radar)</subject><subject>Satellite altimetry</subject><subject>Sea surface</subject><subject>Sensing techniques</subject><subject>Subsurface water</subject><subject>Synthetic aperture radar</subject><subject>Water monitoring</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MFLwzAYBfAgCs7pzT8g4NVq8iVtEm9S3RwMhKrsGLLsq2Rs7Uxaxv57K_PgydO7_HgPHiHXnN1xBuYeGMCiYgKAmxMy4kbKTBklTsmIMSkyLow6JxcprRnjMi_UiMwq3LYd0jdsUmg-aVvTaWz7ZrV3HcYHWvYxYtPR0u3cMmxCFzBR16zopO_6iPQpRPRdaJt0Sc5qt0l49Ztj8jF5fi9fsvnrdFY-zjMnCs2y3OQOZO09SAnMF6B4bgBBK0DlOVMapGErk8scNAcDRtTO6-WAtMfCiTG5OfbuYvvVY-rsuu1jM0xaUKClkgZgULdH5WObUsTa7mLYuniwnNmfs-zfswYujnwfNnj419pFVVZQgGTiG7sBaOo</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Adams, Kyra H.</creator><creator>Reager, John T.</creator><creator>Rosen, Paul</creator><creator>Wiese, David N.</creator><creator>Farr, Tom G.</creator><creator>Rao, Shanti</creator><creator>Haines, Bruce J.</creator><creator>Argus, Donald F.</creator><creator>Liu, Zhen</creator><creator>Smith, Ryan</creator><creator>Famiglietti, James S.</creator><creator>Rodell, Matthew</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0106-7437</orcidid><orcidid>https://orcid.org/0000-0002-9759-2019</orcidid><orcidid>https://orcid.org/0000-0001-7035-0514</orcidid><orcidid>https://orcid.org/0000-0002-3747-6868</orcidid><orcidid>https://orcid.org/0000-0002-2770-4257</orcidid><orcidid>https://orcid.org/0000-0002-6313-823X</orcidid><orcidid>https://orcid.org/0000-0001-5406-2096</orcidid><orcidid>https://orcid.org/0000-0001-7575-2520</orcidid><orcidid>https://orcid.org/0000-0002-4558-6004</orcidid><orcidid>https://orcid.org/0000-0002-6053-5379</orcidid><orcidid>https://orcid.org/0000-0001-8560-6981</orcidid></search><sort><creationdate>202210</creationdate><title>Remote Sensing of Groundwater: Current Capabilities and Future Directions</title><author>Adams, Kyra H. ; Reager, John T. ; Rosen, Paul ; Wiese, David N. ; Farr, Tom G. ; Rao, Shanti ; Haines, Bruce J. ; Argus, Donald F. ; Liu, Zhen ; Smith, Ryan ; Famiglietti, James S. ; Rodell, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3680-595a24fcc24420c6271592e2872e7c10782490d954528129293fac8b5928ce6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Airborne radar</topic><topic>Airborne sensing</topic><topic>Altimetry</topic><topic>aquifer</topic><topic>Earth surface</topic><topic>GNSS</topic><topic>GPS</topic><topic>GRACE</topic><topic>Gravity</topic><topic>Ground-based observation</topic><topic>Groundwater</topic><topic>groundwater modeling</topic><topic>InSAR</topic><topic>Interferometric synthetic aperture radar</topic><topic>Lidar</topic><topic>Monitoring</topic><topic>Natural resources</topic><topic>Navigational satellites</topic><topic>Piezometric head</topic><topic>Radar detection</topic><topic>Remote sensing</topic><topic>Remote sensing techniques</topic><topic>Renewal</topic><topic>SAR (radar)</topic><topic>Satellite altimetry</topic><topic>Sea surface</topic><topic>Sensing techniques</topic><topic>Subsurface water</topic><topic>Synthetic aperture radar</topic><topic>Water monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Kyra H.</creatorcontrib><creatorcontrib>Reager, John T.</creatorcontrib><creatorcontrib>Rosen, Paul</creatorcontrib><creatorcontrib>Wiese, David N.</creatorcontrib><creatorcontrib>Farr, Tom G.</creatorcontrib><creatorcontrib>Rao, Shanti</creatorcontrib><creatorcontrib>Haines, Bruce J.</creatorcontrib><creatorcontrib>Argus, Donald F.</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Smith, Ryan</creatorcontrib><creatorcontrib>Famiglietti, James S.</creatorcontrib><creatorcontrib>Rodell, Matthew</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Kyra H.</au><au>Reager, John T.</au><au>Rosen, Paul</au><au>Wiese, David N.</au><au>Farr, Tom G.</au><au>Rao, Shanti</au><au>Haines, Bruce J.</au><au>Argus, Donald F.</au><au>Liu, Zhen</au><au>Smith, Ryan</au><au>Famiglietti, James S.</au><au>Rodell, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Sensing of Groundwater: Current Capabilities and Future Directions</atitle><jtitle>Water resources research</jtitle><date>2022-10</date><risdate>2022</risdate><volume>58</volume><issue>10</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Globally, groundwater represents a critical natural resource that is affected by changes in natural supply and renewal, as well as by increasing human demand and consumption. However, despite its critical role, groundwater is difficult to accurately quantify as it is beneath the Earth surface. Here, we review several state‐of‐the‐art remote sensing techniques useful for local‐ to global‐scale groundwater monitoring and assessment, including proxies for groundwater extraction. These include inferring changes in subsurface water from mass changes using gravitational measurements, and analyzing changes in the Earth surface height using Interferometric Synthetic Aperture Radar, Light Detection and Ranging, Airborne Electromagnetic Systems, and satellite altimetry. Remote sensing information is often used in tandem with ground‐based observations such as hydraulic head in wells, Global Navigational Satellite System monitoring, and numerical modeling to complement the space‐based approaches. In the future, fusing different remote sensing techniques capable of operating in various environments will yield additional insight on the state and rate of use for groundwater across the globe. Key Points Accurately measuring and monitoring groundwater storage and fluxes is critical for water, food, and energy security Remote sensing approaches such as gravitational measurements, Interferometric Synthetic Aperture Radar, Global Navigational Satellite System, lidar altimetry, and Airborne Electromagnetic Systems can yield indirect yet valuable information about groundwater Fusing multiple remotely sensed data sets or employing other tools such as numerical models increase the applicability of individual approaches</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022WR032219</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-0106-7437</orcidid><orcidid>https://orcid.org/0000-0002-9759-2019</orcidid><orcidid>https://orcid.org/0000-0001-7035-0514</orcidid><orcidid>https://orcid.org/0000-0002-3747-6868</orcidid><orcidid>https://orcid.org/0000-0002-2770-4257</orcidid><orcidid>https://orcid.org/0000-0002-6313-823X</orcidid><orcidid>https://orcid.org/0000-0001-5406-2096</orcidid><orcidid>https://orcid.org/0000-0001-7575-2520</orcidid><orcidid>https://orcid.org/0000-0002-4558-6004</orcidid><orcidid>https://orcid.org/0000-0002-6053-5379</orcidid><orcidid>https://orcid.org/0000-0001-8560-6981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2022-10, Vol.58 (10), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2728474922
source Wiley-Blackwell AGU Digital Archive
subjects Airborne radar
Airborne sensing
Altimetry
aquifer
Earth surface
GNSS
GPS
GRACE
Gravity
Ground-based observation
Groundwater
groundwater modeling
InSAR
Interferometric synthetic aperture radar
Lidar
Monitoring
Natural resources
Navigational satellites
Piezometric head
Radar detection
Remote sensing
Remote sensing techniques
Renewal
SAR (radar)
Satellite altimetry
Sea surface
Sensing techniques
Subsurface water
Synthetic aperture radar
Water monitoring
title Remote Sensing of Groundwater: Current Capabilities and Future Directions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Sensing%20of%20Groundwater:%20Current%20Capabilities%20and%20Future%20Directions&rft.jtitle=Water%20resources%20research&rft.au=Adams,%20Kyra%20H.&rft.date=2022-10&rft.volume=58&rft.issue=10&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2022WR032219&rft_dat=%3Cproquest_cross%3E2728474922%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3680-595a24fcc24420c6271592e2872e7c10782490d954528129293fac8b5928ce6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728474922&rft_id=info:pmid/&rfr_iscdi=true