Loading…
Multi-objective-based reactive power planning and voltage stability enhancement using FACTS and capacitor banks
Reactive power planning (RPP) and voltage stability improvement (VSI) consider two of the most important problems to meet a major challenge of the power system. In this work, a multi-objective genetic algorithm (MOGA) for RPP with objectives of cost minimization of the power losses, new reactive pow...
Saved in:
Published in: | Electrical engineering 2022-10, Vol.104 (5), p.3173-3196 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reactive power planning (RPP) and voltage stability improvement (VSI) consider two of the most important problems to meet a major challenge of the power system. In this work, a multi-objective genetic algorithm (MOGA) for RPP with objectives of cost minimization of the power losses, new reactive power (VAR) sources, maximization of the VSI, and enhancement of total transfer capacity (TTC) is introduced. Different optimization variables are considered including generator voltages, transformer tap changers besides load, and different operational constraints. The best compromise solution is determined through a fuzzy min–max approach. Comparison studies among capacitor banks, flexible ac transmission systems (FACTS) or both as new VAR support sources to achieve better performance are explored. Moreover, the optimal allocations of switchable VAR sources are not determined in advance; instead, they are treated as control variables to improve the techno-economic operation of the network. Added to that many voltage stability indicators are presented, and their results are compared. The effectiveness of the proposed algorithm is examined on a modified IEEE 30-bus test system and South Egypt Electricity network where felicitous results have been acquired. The results expound on the effectiveness of the proposed approach compared with other optimization methods. |
---|---|
ISSN: | 0948-7921 1432-0487 |
DOI: | 10.1007/s00202-022-01542-3 |