Loading…

Preparation of Iron Salt-Modified Sludge Biochar and Its Uptake Behavior for Phosphate

Residual sludge is a significant waste resource, and the preparation of biochar achieves sludge disposal. Biochar has a high uptake capacity for phosphate. To prepare a sludge biochar adsorbent for phosphate, sludge was chemically and anaerobically treated in the presence of iron salts and pyrolyzed...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2022-10, Vol.10 (10), p.2122
Main Authors: Lan, Guoxin, Yan, Xixi, Deng, Peiyao, Li, Tingzhen, Xia, Yaping, Zhu, Zhihao, Wu, Yan, Fu, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Residual sludge is a significant waste resource, and the preparation of biochar achieves sludge disposal. Biochar has a high uptake capacity for phosphate. To prepare a sludge biochar adsorbent for phosphate, sludge was chemically and anaerobically treated in the presence of iron salts and pyrolyzed. We investigated the effects of the pyrolysis temperature and iron salt on the phosphate uptake capacity, finding that the pretreatment of the sludge with iron salts removed intrinsic phosphate, thus improving the uptake ability. The optimal adsorbent, denoted SB-B-Fe, was prepared by pyrolysis at 700 °C and subsequently modified with a 20 g/L iron-containing solution, yielding a phosphate uptake capacity of 0.5 mg/g. Further, the performance of SB-B-Fe remains high at pH 5–9 and is less affected by interfering anions. The sorption kinetics are consistent with the pseudo-second-order kinetic model, suggesting uptake by chemisorption, and the Langmuir model has a saturation capacity of 0.85 mg/g for uptake and prefers monolayer molecular uptake. The characterization showed that the adsorbent surface provided many uptake sites for phosphate and a high specific surface area. We hope that these findings will encourage the development of other value-added waste-based materials for environmental remediation.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10102122