Loading…
Facile synthesis of porous 1,3,5-Trihydroxybenzene substituted g-C3N4 for boosted photocatalytic Rhodamine B degradation and H2O2 production
The reinforced light-harvesting capability, suppressed photocarrier recombination and increased specific surface area represented a possibility of excellent photocatalytic performance for graphitic carbon nitride (g-C3N4)-based photocatalysts. Herein, the porous 1,3,5-Trihydroxybenzene substituted g...
Saved in:
Published in: | Journal of alloys and compounds 2022-12, Vol.925, p.166604, Article 166604 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reinforced light-harvesting capability, suppressed photocarrier recombination and increased specific surface area represented a possibility of excellent photocatalytic performance for graphitic carbon nitride (g-C3N4)-based photocatalysts. Herein, the porous 1,3,5-Trihydroxybenzene substituted g-C3N4 (denoted as PTBCN) composites with superior visible-light-driven photocatalytic properties were rationally constructed via a two-step reaction combination of freeze-drying and thermal-polymerization. The optimal PTBCN-2 achieved the maximum photocatalytic Rhodamine B (Rh B) degradation and H2O2 evolution rate constants, nearly 6.56 and 3.17 times higher than that of bare g-C3N4. The outstanding performances of PTBCN-2 were probably attributed to the extended specific surface area, robust visible light response, adjusted electronic band structure, accelerated separation and transfer of photocarriers as well as good hydrophilicity. As a result, the above integrated merits were directly responsible for the huge superoxide anion (•O2−) generation, which dominated the efficient photocatalytic reactions. This work provided a new idea to design and construct high efficiency porous aromatic ring substituted g-C3N4-related photocatalysts for organic pollutants degradation and H2O2 production.
[Display omitted]
•Porous TB ring substituted g-C3N4 was rationally constructed.•The PTBCN exhibited excellent photocatalytic performance and stability.•The structure, properties, and the mechanism of improvement were elucidated in detail. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2022.166604 |