Loading…
Advances in dielectric performance of atomically engineered Sr1.8Bi0.2Nb3O10 perovskite nanosheet thin films
The search for new high-performance dielectric materials has attracted considerable research interest. Several mechanisms to achieve high permittivity have been proposed, such as BaTiO3-based perovskites or CaCu3Ti4O12. However, developing high-performance thin films remains a challenge. Here, we pr...
Saved in:
Published in: | Journal of alloys and compounds 2022-12, Vol.925, p.166606, Article 166606 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The search for new high-performance dielectric materials has attracted considerable research interest. Several mechanisms to achieve high permittivity have been proposed, such as BaTiO3-based perovskites or CaCu3Ti4O12. However, developing high-performance thin films remains a challenge. Here, we propose a new material design route to achieve high permittivity behavior in atomically thin films. We present a concrete example of Dion–Jacobson-type KSr2-xBixNb3O10 and its cation-exchanged form HSr2-xBixNb3O10, which exhibits a stable colossal permittivity and low dielectric loss. In addition, Sr2(1−x)Bi2xNb3O10-δ nanosheets were obtained by chemical exfoliation, with a high dielectric permittivity of over 500—the highest among all known dielectrics in ultrathin films ( |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2022.166606 |