Loading…
Affine Algebras at Infinite Distance Limits in the Heterotic String
We analyze the boundaries of the moduli spaces of compactifications of the heterotic string on \(T^d\), making particular emphasis on \(d=2\) and its F-theory dual. We compute the OPE algebras as we approach all the infinite distance limits that correspond to (possibly partial) decompactification li...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Collazuol, Veronica Graña, Mariana Herráez, Alvaro Parra De Freitas, Héctor |
description | We analyze the boundaries of the moduli spaces of compactifications of the heterotic string on \(T^d\), making particular emphasis on \(d=2\) and its F-theory dual. We compute the OPE algebras as we approach all the infinite distance limits that correspond to (possibly partial) decompactification limits in some dual frame. When decompactifying \(k\) directions, we find infinite towers of states becoming light that enhance the algebra arising at a given point in the moduli space of the \(T^{d-k}\) compactification to its \(k\)-loop version, where the central extensions are given by the \(k\) KK vectors. For \(T^2\) compactifications, we reproduce all the affine algebras that arise in the F-theory dual, and show all the towers explicitly, including some that are not manifest in the F-theory counterparts. Furthermore, we construct the affine \(SO(32)\) algebra arising in the full decompactification limit, both in the heterotic and in the F-theory sides, showing that not only affine algebras of exceptional type arise in the latter. |
doi_str_mv | 10.48550/arxiv.2210.13471 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2728706064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728706064</sourcerecordid><originalsourceid>FETCH-LOGICAL-a951-6bd1c681964a7f3ace60c945df6ac59e3f48de754bd0cdd11a44bea82ce42623</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wF3A9dTk5jnLYXy0MOCi7ksmuakpdapJKn6-A7o6cBbnEHLH2VpapdiDyz_pew0wCy6k4VdkAULwxkqAG7Iq5cgYA21AKbEgfRdjmpB2pwOO2RXqKt1Os0oV6WMq1U0e6ZA-Ui00TbS-I91gxXyuydNdzWk63JLr6E4FV_9ckt3z01u_aYbXl23fDY1rFW_0GLjXlrdaOhOF86iZb6UKUTuvWhRR2oBGyTEwHwLnTsoRnQWPEjSIJbn_q37m89cFS90fz5c8zcM9GLCGaaal-AXOykuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728706064</pqid></control><display><type>article</type><title>Affine Algebras at Infinite Distance Limits in the Heterotic String</title><source>Publicly Available Content Database</source><creator>Collazuol, Veronica ; Graña, Mariana ; Herráez, Alvaro ; Parra De Freitas, Héctor</creator><creatorcontrib>Collazuol, Veronica ; Graña, Mariana ; Herráez, Alvaro ; Parra De Freitas, Héctor</creatorcontrib><description>We analyze the boundaries of the moduli spaces of compactifications of the heterotic string on \(T^d\), making particular emphasis on \(d=2\) and its F-theory dual. We compute the OPE algebras as we approach all the infinite distance limits that correspond to (possibly partial) decompactification limits in some dual frame. When decompactifying \(k\) directions, we find infinite towers of states becoming light that enhance the algebra arising at a given point in the moduli space of the \(T^{d-k}\) compactification to its \(k\)-loop version, where the central extensions are given by the \(k\) KK vectors. For \(T^2\) compactifications, we reproduce all the affine algebras that arise in the F-theory dual, and show all the towers explicitly, including some that are not manifest in the F-theory counterparts. Furthermore, we construct the affine \(SO(32)\) algebra arising in the full decompactification limit, both in the heterotic and in the F-theory sides, showing that not only affine algebras of exceptional type arise in the latter.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2210.13471</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Mathematical analysis ; Strings ; Towers ; Vectors (mathematics)</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2728706064?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Collazuol, Veronica</creatorcontrib><creatorcontrib>Graña, Mariana</creatorcontrib><creatorcontrib>Herráez, Alvaro</creatorcontrib><creatorcontrib>Parra De Freitas, Héctor</creatorcontrib><title>Affine Algebras at Infinite Distance Limits in the Heterotic String</title><title>arXiv.org</title><description>We analyze the boundaries of the moduli spaces of compactifications of the heterotic string on \(T^d\), making particular emphasis on \(d=2\) and its F-theory dual. We compute the OPE algebras as we approach all the infinite distance limits that correspond to (possibly partial) decompactification limits in some dual frame. When decompactifying \(k\) directions, we find infinite towers of states becoming light that enhance the algebra arising at a given point in the moduli space of the \(T^{d-k}\) compactification to its \(k\)-loop version, where the central extensions are given by the \(k\) KK vectors. For \(T^2\) compactifications, we reproduce all the affine algebras that arise in the F-theory dual, and show all the towers explicitly, including some that are not manifest in the F-theory counterparts. Furthermore, we construct the affine \(SO(32)\) algebra arising in the full decompactification limit, both in the heterotic and in the F-theory sides, showing that not only affine algebras of exceptional type arise in the latter.</description><subject>Algebra</subject><subject>Mathematical analysis</subject><subject>Strings</subject><subject>Towers</subject><subject>Vectors (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wF3A9dTk5jnLYXy0MOCi7ksmuakpdapJKn6-A7o6cBbnEHLH2VpapdiDyz_pew0wCy6k4VdkAULwxkqAG7Iq5cgYA21AKbEgfRdjmpB2pwOO2RXqKt1Os0oV6WMq1U0e6ZA-Ui00TbS-I91gxXyuydNdzWk63JLr6E4FV_9ckt3z01u_aYbXl23fDY1rFW_0GLjXlrdaOhOF86iZb6UKUTuvWhRR2oBGyTEwHwLnTsoRnQWPEjSIJbn_q37m89cFS90fz5c8zcM9GLCGaaal-AXOykuI</recordid><startdate>20221024</startdate><enddate>20221024</enddate><creator>Collazuol, Veronica</creator><creator>Graña, Mariana</creator><creator>Herráez, Alvaro</creator><creator>Parra De Freitas, Héctor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221024</creationdate><title>Affine Algebras at Infinite Distance Limits in the Heterotic String</title><author>Collazuol, Veronica ; Graña, Mariana ; Herráez, Alvaro ; Parra De Freitas, Héctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a951-6bd1c681964a7f3ace60c945df6ac59e3f48de754bd0cdd11a44bea82ce42623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Mathematical analysis</topic><topic>Strings</topic><topic>Towers</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Collazuol, Veronica</creatorcontrib><creatorcontrib>Graña, Mariana</creatorcontrib><creatorcontrib>Herráez, Alvaro</creatorcontrib><creatorcontrib>Parra De Freitas, Héctor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collazuol, Veronica</au><au>Graña, Mariana</au><au>Herráez, Alvaro</au><au>Parra De Freitas, Héctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affine Algebras at Infinite Distance Limits in the Heterotic String</atitle><jtitle>arXiv.org</jtitle><date>2022-10-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We analyze the boundaries of the moduli spaces of compactifications of the heterotic string on \(T^d\), making particular emphasis on \(d=2\) and its F-theory dual. We compute the OPE algebras as we approach all the infinite distance limits that correspond to (possibly partial) decompactification limits in some dual frame. When decompactifying \(k\) directions, we find infinite towers of states becoming light that enhance the algebra arising at a given point in the moduli space of the \(T^{d-k}\) compactification to its \(k\)-loop version, where the central extensions are given by the \(k\) KK vectors. For \(T^2\) compactifications, we reproduce all the affine algebras that arise in the F-theory dual, and show all the towers explicitly, including some that are not manifest in the F-theory counterparts. Furthermore, we construct the affine \(SO(32)\) algebra arising in the full decompactification limit, both in the heterotic and in the F-theory sides, showing that not only affine algebras of exceptional type arise in the latter.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2210.13471</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2728706064 |
source | Publicly Available Content Database |
subjects | Algebra Mathematical analysis Strings Towers Vectors (mathematics) |
title | Affine Algebras at Infinite Distance Limits in the Heterotic String |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affine%20Algebras%20at%20Infinite%20Distance%20Limits%20in%20the%20Heterotic%20String&rft.jtitle=arXiv.org&rft.au=Collazuol,%20Veronica&rft.date=2022-10-24&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2210.13471&rft_dat=%3Cproquest%3E2728706064%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a951-6bd1c681964a7f3ace60c945df6ac59e3f48de754bd0cdd11a44bea82ce42623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728706064&rft_id=info:pmid/&rfr_iscdi=true |