Loading…

Disk counting statistics near hard edges of random normal matrices: the multi-component regime

We consider a two-dimensional point process whose points are separated into two disjoint components by a hard wall, and study the multivariate moment generating function of the corresponding disk counting statistics. We investigate the ``hard edge regime" where all disk boundaries are a distanc...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-10
Main Authors: Ameur, Yacin, Charlier, Christophe, Cronvall, Joakim, Lenells, Jonatan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ameur, Yacin
Charlier, Christophe
Cronvall, Joakim
Lenells, Jonatan
description We consider a two-dimensional point process whose points are separated into two disjoint components by a hard wall, and study the multivariate moment generating function of the corresponding disk counting statistics. We investigate the ``hard edge regime" where all disk boundaries are a distance of order \(\frac{1}{n}\) away from the hard wall, where \(n\) is the number of points. We prove that as \(n \to + \infty\), the asymptotics of the moment generating function are of the form \begin{align*} & \exp \bigg(C_{1}n + C_{2}\ln n + C_{3} + \mathcal{F}_{n} + \frac{C_{4}}{\sqrt{n}} + \mathcal{O}(n^{-\frac{3}{5}})\bigg), \end{align*} and we determine the constants \(C_{1},\dots,C_{4}\) explicitly. The oscillatory term \(\mathcal{F}_{n}\) is of order \(1\) and is given in terms of the Jacobi theta function. Our theorems allow us to derive various precise results on the disk counting function. For example, we prove that the asymptotic fluctuations of the number of points in one component are of order \(1\) and are given by an oscillatory discrete Gaussian. Furthermore, the variance of this random variable enjoys asymptotics described by the Weierstrass \(\wp\)-function.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2728714734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2728714734</sourcerecordid><originalsourceid>FETCH-proquest_journals_27287147343</originalsourceid><addsrcrecordid>eNqNyk0OgjAQQOHGxESi3GES1yTQgiVu_YkHcK1pYIAibbEz3F8XHsDVW3xvJRKpVJHVpZQbkRKNeZ7Lg5ZVpRLxOFt6QRMWz9b3QGzYEtuGwKOJMJjYArY9EoQOovFtcOBDdGYCZzjaBukIPCC4ZWKbNcHNwaNniNhbhzux7sxEmP66Ffvr5X66ZXMM7wWJn2NYov_SU2pZ66LUqlT_XR-Q-USd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728714734</pqid></control><display><type>article</type><title>Disk counting statistics near hard edges of random normal matrices: the multi-component regime</title><source>Publicly Available Content (ProQuest)</source><creator>Ameur, Yacin ; Charlier, Christophe ; Cronvall, Joakim ; Lenells, Jonatan</creator><creatorcontrib>Ameur, Yacin ; Charlier, Christophe ; Cronvall, Joakim ; Lenells, Jonatan</creatorcontrib><description>We consider a two-dimensional point process whose points are separated into two disjoint components by a hard wall, and study the multivariate moment generating function of the corresponding disk counting statistics. We investigate the ``hard edge regime" where all disk boundaries are a distance of order \(\frac{1}{n}\) away from the hard wall, where \(n\) is the number of points. We prove that as \(n \to + \infty\), the asymptotics of the moment generating function are of the form \begin{align*} &amp; \exp \bigg(C_{1}n + C_{2}\ln n + C_{3} + \mathcal{F}_{n} + \frac{C_{4}}{\sqrt{n}} + \mathcal{O}(n^{-\frac{3}{5}})\bigg), \end{align*} and we determine the constants \(C_{1},\dots,C_{4}\) explicitly. The oscillatory term \(\mathcal{F}_{n}\) is of order \(1\) and is given in terms of the Jacobi theta function. Our theorems allow us to derive various precise results on the disk counting function. For example, we prove that the asymptotic fluctuations of the number of points in one component are of order \(1\) and are given by an oscillatory discrete Gaussian. Furthermore, the variance of this random variable enjoys asymptotics described by the Weierstrass \(\wp\)-function.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Random variables</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2728714734?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Ameur, Yacin</creatorcontrib><creatorcontrib>Charlier, Christophe</creatorcontrib><creatorcontrib>Cronvall, Joakim</creatorcontrib><creatorcontrib>Lenells, Jonatan</creatorcontrib><title>Disk counting statistics near hard edges of random normal matrices: the multi-component regime</title><title>arXiv.org</title><description>We consider a two-dimensional point process whose points are separated into two disjoint components by a hard wall, and study the multivariate moment generating function of the corresponding disk counting statistics. We investigate the ``hard edge regime" where all disk boundaries are a distance of order \(\frac{1}{n}\) away from the hard wall, where \(n\) is the number of points. We prove that as \(n \to + \infty\), the asymptotics of the moment generating function are of the form \begin{align*} &amp; \exp \bigg(C_{1}n + C_{2}\ln n + C_{3} + \mathcal{F}_{n} + \frac{C_{4}}{\sqrt{n}} + \mathcal{O}(n^{-\frac{3}{5}})\bigg), \end{align*} and we determine the constants \(C_{1},\dots,C_{4}\) explicitly. The oscillatory term \(\mathcal{F}_{n}\) is of order \(1\) and is given in terms of the Jacobi theta function. Our theorems allow us to derive various precise results on the disk counting function. For example, we prove that the asymptotic fluctuations of the number of points in one component are of order \(1\) and are given by an oscillatory discrete Gaussian. Furthermore, the variance of this random variable enjoys asymptotics described by the Weierstrass \(\wp\)-function.</description><subject>Asymptotic properties</subject><subject>Random variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk0OgjAQQOHGxESi3GES1yTQgiVu_YkHcK1pYIAibbEz3F8XHsDVW3xvJRKpVJHVpZQbkRKNeZ7Lg5ZVpRLxOFt6QRMWz9b3QGzYEtuGwKOJMJjYArY9EoQOovFtcOBDdGYCZzjaBukIPCC4ZWKbNcHNwaNniNhbhzux7sxEmP66Ffvr5X66ZXMM7wWJn2NYov_SU2pZ66LUqlT_XR-Q-USd</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Ameur, Yacin</creator><creator>Charlier, Christophe</creator><creator>Cronvall, Joakim</creator><creator>Lenells, Jonatan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221025</creationdate><title>Disk counting statistics near hard edges of random normal matrices: the multi-component regime</title><author>Ameur, Yacin ; Charlier, Christophe ; Cronvall, Joakim ; Lenells, Jonatan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27287147343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Ameur, Yacin</creatorcontrib><creatorcontrib>Charlier, Christophe</creatorcontrib><creatorcontrib>Cronvall, Joakim</creatorcontrib><creatorcontrib>Lenells, Jonatan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ameur, Yacin</au><au>Charlier, Christophe</au><au>Cronvall, Joakim</au><au>Lenells, Jonatan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Disk counting statistics near hard edges of random normal matrices: the multi-component regime</atitle><jtitle>arXiv.org</jtitle><date>2022-10-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We consider a two-dimensional point process whose points are separated into two disjoint components by a hard wall, and study the multivariate moment generating function of the corresponding disk counting statistics. We investigate the ``hard edge regime" where all disk boundaries are a distance of order \(\frac{1}{n}\) away from the hard wall, where \(n\) is the number of points. We prove that as \(n \to + \infty\), the asymptotics of the moment generating function are of the form \begin{align*} &amp; \exp \bigg(C_{1}n + C_{2}\ln n + C_{3} + \mathcal{F}_{n} + \frac{C_{4}}{\sqrt{n}} + \mathcal{O}(n^{-\frac{3}{5}})\bigg), \end{align*} and we determine the constants \(C_{1},\dots,C_{4}\) explicitly. The oscillatory term \(\mathcal{F}_{n}\) is of order \(1\) and is given in terms of the Jacobi theta function. Our theorems allow us to derive various precise results on the disk counting function. For example, we prove that the asymptotic fluctuations of the number of points in one component are of order \(1\) and are given by an oscillatory discrete Gaussian. Furthermore, the variance of this random variable enjoys asymptotics described by the Weierstrass \(\wp\)-function.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2728714734
source Publicly Available Content (ProQuest)
subjects Asymptotic properties
Random variables
title Disk counting statistics near hard edges of random normal matrices: the multi-component regime
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A53%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Disk%20counting%20statistics%20near%20hard%20edges%20of%20random%20normal%20matrices:%20the%20multi-component%20regime&rft.jtitle=arXiv.org&rft.au=Ameur,%20Yacin&rft.date=2022-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2728714734%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27287147343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2728714734&rft_id=info:pmid/&rfr_iscdi=true