Loading…
Light-sheet 3D microprinting via two-colour two-step absorption
High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10 6 voxels s –1 , although at vox...
Saved in:
Published in: | Nature photonics 2022-11, Vol.16 (11), p.784-791 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93 |
container_end_page | 791 |
container_issue | 11 |
container_start_page | 784 |
container_title | Nature photonics |
container_volume | 16 |
creator | Hahn, Vincent Rietz, Pascal Hermann, Frank Müller, Patrick Barner-Kowollik, Christopher Schlöder, Tobias Wenzel, Wolfgang Blasco, Eva Wegener, Martin |
description | High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10
6
voxels s
–1
, although at voxel volumes of >100 μm
3
. Scanning-based nonlinear optical approaches have achieved voxel volumes of |
doi_str_mv | 10.1038/s41566-022-01081-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729316637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729316637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93</originalsourceid><addsrcrecordid>eNp9kL1OAzEQhC0EEiHwAlQnURu8_neFUCCAFIkGasu5-JKLkvNhOyDeHieHoKPaKXZm9xuELoFcA2H6JnEQUmJCKSZANGByhEaguMFcG3b8q7U4RWcprQkRzFA6QrezdrnKOK28zxW7r7ZtHUMf2y633bL6aF2VPwOuwybs4kGm7PvKzVOIfW5Dd45OGrdJ_uJnjtHb9OF18oRnL4_Pk7sZrhmYjOfEzAHMQjPfMMWpNEZL5R2pF4JLBqJxtfNGMCkFaM85qblS1DW04IiFYWN0NeT2MbzvfMp2XT7qyklLFTUMpGSqbNFhq0CkFH1jC8rWxS8LxO6LskNRthRlD0VZUkxsMKU999LHv-h_XN_moGnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729316637</pqid></control><display><type>article</type><title>Light-sheet 3D microprinting via two-colour two-step absorption</title><source>Nature</source><creator>Hahn, Vincent ; Rietz, Pascal ; Hermann, Frank ; Müller, Patrick ; Barner-Kowollik, Christopher ; Schlöder, Tobias ; Wenzel, Wolfgang ; Blasco, Eva ; Wegener, Martin</creator><creatorcontrib>Hahn, Vincent ; Rietz, Pascal ; Hermann, Frank ; Müller, Patrick ; Barner-Kowollik, Christopher ; Schlöder, Tobias ; Wenzel, Wolfgang ; Blasco, Eva ; Wegener, Martin</creatorcontrib><description>High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10
6
voxels s
–1
, although at voxel volumes of >100 μm
3
. Scanning-based nonlinear optical approaches have achieved voxel volumes of <1 μm
3
, but suffer from low printing speed or high cost because of the required femtosecond lasers. Here we present an approach that we refer to as light-sheet 3D laser microprinting. It combines image projection with an AND-type optical nonlinearity based on two-colour two-step absorption. The underlying photoresin is composed of 2,3-butanedione as the photoinitiator, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl as the scavenger and dipentaerythritol hexaacrylate as the multifunctional monomer. Using continuous-wave laser diodes at 440 nm wavelength for projection and a continuous-wave laser at 660 nm for the light-sheet, we achieve a peak printing rate of 7 × 10
6
voxels s
–1
at a voxel volume of 0.55 μm
3
.
High-speed, high-resolution optics-based printing typically requires femtosecond pulsed lasers. We demonstrate optical printing using indigo-blue laser diodes and a red continuous-wave laser, achieving a peak printing rate of 7 × 10
6
voxels s
–1
at a voxel volume of 0.55 µm
3
.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-022-01081-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1080 ; 639/624/1107/1109 ; 639/624/399/1028 ; 639/638/439 ; 639/925/357/1015 ; Absorption ; Applied and Technical Physics ; Color ; Continuous wave lasers ; Femtosecond pulsed lasers ; High resolution ; High speed ; Indigo ; Lasers ; Light sheets ; Microprinting ; Nonlinear optics ; Nonlinear systems ; Nonlinearity ; Optics ; Photoinitiators ; Physics ; Physics and Astronomy ; Polymers ; Printing ; Quantum Physics ; Semiconductor lasers ; Three dimensional printing</subject><ispartof>Nature photonics, 2022-11, Vol.16 (11), p.784-791</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93</citedby><cites>FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93</cites><orcidid>0000-0003-3229-3285 ; 0000-0002-9770-2441 ; 0000-0002-0849-4223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hahn, Vincent</creatorcontrib><creatorcontrib>Rietz, Pascal</creatorcontrib><creatorcontrib>Hermann, Frank</creatorcontrib><creatorcontrib>Müller, Patrick</creatorcontrib><creatorcontrib>Barner-Kowollik, Christopher</creatorcontrib><creatorcontrib>Schlöder, Tobias</creatorcontrib><creatorcontrib>Wenzel, Wolfgang</creatorcontrib><creatorcontrib>Blasco, Eva</creatorcontrib><creatorcontrib>Wegener, Martin</creatorcontrib><title>Light-sheet 3D microprinting via two-colour two-step absorption</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10
6
voxels s
–1
, although at voxel volumes of >100 μm
3
. Scanning-based nonlinear optical approaches have achieved voxel volumes of <1 μm
3
, but suffer from low printing speed or high cost because of the required femtosecond lasers. Here we present an approach that we refer to as light-sheet 3D laser microprinting. It combines image projection with an AND-type optical nonlinearity based on two-colour two-step absorption. The underlying photoresin is composed of 2,3-butanedione as the photoinitiator, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl as the scavenger and dipentaerythritol hexaacrylate as the multifunctional monomer. Using continuous-wave laser diodes at 440 nm wavelength for projection and a continuous-wave laser at 660 nm for the light-sheet, we achieve a peak printing rate of 7 × 10
6
voxels s
–1
at a voxel volume of 0.55 μm
3
.
High-speed, high-resolution optics-based printing typically requires femtosecond pulsed lasers. We demonstrate optical printing using indigo-blue laser diodes and a red continuous-wave laser, achieving a peak printing rate of 7 × 10
6
voxels s
–1
at a voxel volume of 0.55 µm
3
.</description><subject>639/624/1075/1080</subject><subject>639/624/1107/1109</subject><subject>639/624/399/1028</subject><subject>639/638/439</subject><subject>639/925/357/1015</subject><subject>Absorption</subject><subject>Applied and Technical Physics</subject><subject>Color</subject><subject>Continuous wave lasers</subject><subject>Femtosecond pulsed lasers</subject><subject>High resolution</subject><subject>High speed</subject><subject>Indigo</subject><subject>Lasers</subject><subject>Light sheets</subject><subject>Microprinting</subject><subject>Nonlinear optics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Optics</subject><subject>Photoinitiators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymers</subject><subject>Printing</subject><subject>Quantum Physics</subject><subject>Semiconductor lasers</subject><subject>Three dimensional printing</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OAzEQhC0EEiHwAlQnURu8_neFUCCAFIkGasu5-JKLkvNhOyDeHieHoKPaKXZm9xuELoFcA2H6JnEQUmJCKSZANGByhEaguMFcG3b8q7U4RWcprQkRzFA6QrezdrnKOK28zxW7r7ZtHUMf2y633bL6aF2VPwOuwybs4kGm7PvKzVOIfW5Dd45OGrdJ_uJnjtHb9OF18oRnL4_Pk7sZrhmYjOfEzAHMQjPfMMWpNEZL5R2pF4JLBqJxtfNGMCkFaM85qblS1DW04IiFYWN0NeT2MbzvfMp2XT7qyklLFTUMpGSqbNFhq0CkFH1jC8rWxS8LxO6LskNRthRlD0VZUkxsMKU999LHv-h_XN_moGnk</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Hahn, Vincent</creator><creator>Rietz, Pascal</creator><creator>Hermann, Frank</creator><creator>Müller, Patrick</creator><creator>Barner-Kowollik, Christopher</creator><creator>Schlöder, Tobias</creator><creator>Wenzel, Wolfgang</creator><creator>Blasco, Eva</creator><creator>Wegener, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3229-3285</orcidid><orcidid>https://orcid.org/0000-0002-9770-2441</orcidid><orcidid>https://orcid.org/0000-0002-0849-4223</orcidid></search><sort><creationdate>20221101</creationdate><title>Light-sheet 3D microprinting via two-colour two-step absorption</title><author>Hahn, Vincent ; Rietz, Pascal ; Hermann, Frank ; Müller, Patrick ; Barner-Kowollik, Christopher ; Schlöder, Tobias ; Wenzel, Wolfgang ; Blasco, Eva ; Wegener, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/624/1075/1080</topic><topic>639/624/1107/1109</topic><topic>639/624/399/1028</topic><topic>639/638/439</topic><topic>639/925/357/1015</topic><topic>Absorption</topic><topic>Applied and Technical Physics</topic><topic>Color</topic><topic>Continuous wave lasers</topic><topic>Femtosecond pulsed lasers</topic><topic>High resolution</topic><topic>High speed</topic><topic>Indigo</topic><topic>Lasers</topic><topic>Light sheets</topic><topic>Microprinting</topic><topic>Nonlinear optics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Optics</topic><topic>Photoinitiators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymers</topic><topic>Printing</topic><topic>Quantum Physics</topic><topic>Semiconductor lasers</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hahn, Vincent</creatorcontrib><creatorcontrib>Rietz, Pascal</creatorcontrib><creatorcontrib>Hermann, Frank</creatorcontrib><creatorcontrib>Müller, Patrick</creatorcontrib><creatorcontrib>Barner-Kowollik, Christopher</creatorcontrib><creatorcontrib>Schlöder, Tobias</creatorcontrib><creatorcontrib>Wenzel, Wolfgang</creatorcontrib><creatorcontrib>Blasco, Eva</creatorcontrib><creatorcontrib>Wegener, Martin</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hahn, Vincent</au><au>Rietz, Pascal</au><au>Hermann, Frank</au><au>Müller, Patrick</au><au>Barner-Kowollik, Christopher</au><au>Schlöder, Tobias</au><au>Wenzel, Wolfgang</au><au>Blasco, Eva</au><au>Wegener, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-sheet 3D microprinting via two-colour two-step absorption</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>16</volume><issue>11</issue><spage>784</spage><epage>791</epage><pages>784-791</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10
6
voxels s
–1
, although at voxel volumes of >100 μm
3
. Scanning-based nonlinear optical approaches have achieved voxel volumes of <1 μm
3
, but suffer from low printing speed or high cost because of the required femtosecond lasers. Here we present an approach that we refer to as light-sheet 3D laser microprinting. It combines image projection with an AND-type optical nonlinearity based on two-colour two-step absorption. The underlying photoresin is composed of 2,3-butanedione as the photoinitiator, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl as the scavenger and dipentaerythritol hexaacrylate as the multifunctional monomer. Using continuous-wave laser diodes at 440 nm wavelength for projection and a continuous-wave laser at 660 nm for the light-sheet, we achieve a peak printing rate of 7 × 10
6
voxels s
–1
at a voxel volume of 0.55 μm
3
.
High-speed, high-resolution optics-based printing typically requires femtosecond pulsed lasers. We demonstrate optical printing using indigo-blue laser diodes and a red continuous-wave laser, achieving a peak printing rate of 7 × 10
6
voxels s
–1
at a voxel volume of 0.55 µm
3
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-022-01081-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3229-3285</orcidid><orcidid>https://orcid.org/0000-0002-9770-2441</orcidid><orcidid>https://orcid.org/0000-0002-0849-4223</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2022-11, Vol.16 (11), p.784-791 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2729316637 |
source | Nature |
subjects | 639/624/1075/1080 639/624/1107/1109 639/624/399/1028 639/638/439 639/925/357/1015 Absorption Applied and Technical Physics Color Continuous wave lasers Femtosecond pulsed lasers High resolution High speed Indigo Lasers Light sheets Microprinting Nonlinear optics Nonlinear systems Nonlinearity Optics Photoinitiators Physics Physics and Astronomy Polymers Printing Quantum Physics Semiconductor lasers Three dimensional printing |
title | Light-sheet 3D microprinting via two-colour two-step absorption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-sheet%203D%20microprinting%20via%20two-colour%20two-step%20absorption&rft.jtitle=Nature%20photonics&rft.au=Hahn,%20Vincent&rft.date=2022-11-01&rft.volume=16&rft.issue=11&rft.spage=784&rft.epage=791&rft.pages=784-791&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-022-01081-0&rft_dat=%3Cproquest_cross%3E2729316637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729316637&rft_id=info:pmid/&rfr_iscdi=true |