Loading…

Light-sheet 3D microprinting via two-colour two-step absorption

High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10 6  voxels s –1 , although at vox...

Full description

Saved in:
Bibliographic Details
Published in:Nature photonics 2022-11, Vol.16 (11), p.784-791
Main Authors: Hahn, Vincent, Rietz, Pascal, Hermann, Frank, Müller, Patrick, Barner-Kowollik, Christopher, Schlöder, Tobias, Wenzel, Wolfgang, Blasco, Eva, Wegener, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93
cites cdi_FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93
container_end_page 791
container_issue 11
container_start_page 784
container_title Nature photonics
container_volume 16
creator Hahn, Vincent
Rietz, Pascal
Hermann, Frank
Müller, Patrick
Barner-Kowollik, Christopher
Schlöder, Tobias
Wenzel, Wolfgang
Blasco, Eva
Wegener, Martin
description High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10 6  voxels s –1 , although at voxel volumes of >100 μm 3 . Scanning-based nonlinear optical approaches have achieved voxel volumes of
doi_str_mv 10.1038/s41566-022-01081-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729316637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729316637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93</originalsourceid><addsrcrecordid>eNp9kL1OAzEQhC0EEiHwAlQnURu8_neFUCCAFIkGasu5-JKLkvNhOyDeHieHoKPaKXZm9xuELoFcA2H6JnEQUmJCKSZANGByhEaguMFcG3b8q7U4RWcprQkRzFA6QrezdrnKOK28zxW7r7ZtHUMf2y633bL6aF2VPwOuwybs4kGm7PvKzVOIfW5Dd45OGrdJ_uJnjtHb9OF18oRnL4_Pk7sZrhmYjOfEzAHMQjPfMMWpNEZL5R2pF4JLBqJxtfNGMCkFaM85qblS1DW04IiFYWN0NeT2MbzvfMp2XT7qyklLFTUMpGSqbNFhq0CkFH1jC8rWxS8LxO6LskNRthRlD0VZUkxsMKU999LHv-h_XN_moGnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729316637</pqid></control><display><type>article</type><title>Light-sheet 3D microprinting via two-colour two-step absorption</title><source>Nature</source><creator>Hahn, Vincent ; Rietz, Pascal ; Hermann, Frank ; Müller, Patrick ; Barner-Kowollik, Christopher ; Schlöder, Tobias ; Wenzel, Wolfgang ; Blasco, Eva ; Wegener, Martin</creator><creatorcontrib>Hahn, Vincent ; Rietz, Pascal ; Hermann, Frank ; Müller, Patrick ; Barner-Kowollik, Christopher ; Schlöder, Tobias ; Wenzel, Wolfgang ; Blasco, Eva ; Wegener, Martin</creatorcontrib><description>High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10 6  voxels s –1 , although at voxel volumes of &gt;100 μm 3 . Scanning-based nonlinear optical approaches have achieved voxel volumes of &lt;1 μm 3 , but suffer from low printing speed or high cost because of the required femtosecond lasers. Here we present an approach that we refer to as light-sheet 3D laser microprinting. It combines image projection with an AND-type optical nonlinearity based on two-colour two-step absorption. The underlying photoresin is composed of 2,3-butanedione as the photoinitiator, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl as the scavenger and dipentaerythritol hexaacrylate as the multifunctional monomer. Using continuous-wave laser diodes at 440 nm wavelength for projection and a continuous-wave laser at 660 nm for the light-sheet, we achieve a peak printing rate of 7 × 10 6  voxels s –1 at a voxel volume of 0.55 μm 3 . High-speed, high-resolution optics-based printing typically requires femtosecond pulsed lasers. We demonstrate optical printing using indigo-blue laser diodes and a red continuous-wave laser, achieving a peak printing rate of 7 × 10 6  voxels s –1 at a voxel volume of 0.55 µm 3 .</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-022-01081-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1080 ; 639/624/1107/1109 ; 639/624/399/1028 ; 639/638/439 ; 639/925/357/1015 ; Absorption ; Applied and Technical Physics ; Color ; Continuous wave lasers ; Femtosecond pulsed lasers ; High resolution ; High speed ; Indigo ; Lasers ; Light sheets ; Microprinting ; Nonlinear optics ; Nonlinear systems ; Nonlinearity ; Optics ; Photoinitiators ; Physics ; Physics and Astronomy ; Polymers ; Printing ; Quantum Physics ; Semiconductor lasers ; Three dimensional printing</subject><ispartof>Nature photonics, 2022-11, Vol.16 (11), p.784-791</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93</citedby><cites>FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93</cites><orcidid>0000-0003-3229-3285 ; 0000-0002-9770-2441 ; 0000-0002-0849-4223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hahn, Vincent</creatorcontrib><creatorcontrib>Rietz, Pascal</creatorcontrib><creatorcontrib>Hermann, Frank</creatorcontrib><creatorcontrib>Müller, Patrick</creatorcontrib><creatorcontrib>Barner-Kowollik, Christopher</creatorcontrib><creatorcontrib>Schlöder, Tobias</creatorcontrib><creatorcontrib>Wenzel, Wolfgang</creatorcontrib><creatorcontrib>Blasco, Eva</creatorcontrib><creatorcontrib>Wegener, Martin</creatorcontrib><title>Light-sheet 3D microprinting via two-colour two-step absorption</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10 6  voxels s –1 , although at voxel volumes of &gt;100 μm 3 . Scanning-based nonlinear optical approaches have achieved voxel volumes of &lt;1 μm 3 , but suffer from low printing speed or high cost because of the required femtosecond lasers. Here we present an approach that we refer to as light-sheet 3D laser microprinting. It combines image projection with an AND-type optical nonlinearity based on two-colour two-step absorption. The underlying photoresin is composed of 2,3-butanedione as the photoinitiator, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl as the scavenger and dipentaerythritol hexaacrylate as the multifunctional monomer. Using continuous-wave laser diodes at 440 nm wavelength for projection and a continuous-wave laser at 660 nm for the light-sheet, we achieve a peak printing rate of 7 × 10 6  voxels s –1 at a voxel volume of 0.55 μm 3 . High-speed, high-resolution optics-based printing typically requires femtosecond pulsed lasers. We demonstrate optical printing using indigo-blue laser diodes and a red continuous-wave laser, achieving a peak printing rate of 7 × 10 6  voxels s –1 at a voxel volume of 0.55 µm 3 .</description><subject>639/624/1075/1080</subject><subject>639/624/1107/1109</subject><subject>639/624/399/1028</subject><subject>639/638/439</subject><subject>639/925/357/1015</subject><subject>Absorption</subject><subject>Applied and Technical Physics</subject><subject>Color</subject><subject>Continuous wave lasers</subject><subject>Femtosecond pulsed lasers</subject><subject>High resolution</subject><subject>High speed</subject><subject>Indigo</subject><subject>Lasers</subject><subject>Light sheets</subject><subject>Microprinting</subject><subject>Nonlinear optics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Optics</subject><subject>Photoinitiators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymers</subject><subject>Printing</subject><subject>Quantum Physics</subject><subject>Semiconductor lasers</subject><subject>Three dimensional printing</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OAzEQhC0EEiHwAlQnURu8_neFUCCAFIkGasu5-JKLkvNhOyDeHieHoKPaKXZm9xuELoFcA2H6JnEQUmJCKSZANGByhEaguMFcG3b8q7U4RWcprQkRzFA6QrezdrnKOK28zxW7r7ZtHUMf2y633bL6aF2VPwOuwybs4kGm7PvKzVOIfW5Dd45OGrdJ_uJnjtHb9OF18oRnL4_Pk7sZrhmYjOfEzAHMQjPfMMWpNEZL5R2pF4JLBqJxtfNGMCkFaM85qblS1DW04IiFYWN0NeT2MbzvfMp2XT7qyklLFTUMpGSqbNFhq0CkFH1jC8rWxS8LxO6LskNRthRlD0VZUkxsMKU999LHv-h_XN_moGnk</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Hahn, Vincent</creator><creator>Rietz, Pascal</creator><creator>Hermann, Frank</creator><creator>Müller, Patrick</creator><creator>Barner-Kowollik, Christopher</creator><creator>Schlöder, Tobias</creator><creator>Wenzel, Wolfgang</creator><creator>Blasco, Eva</creator><creator>Wegener, Martin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3229-3285</orcidid><orcidid>https://orcid.org/0000-0002-9770-2441</orcidid><orcidid>https://orcid.org/0000-0002-0849-4223</orcidid></search><sort><creationdate>20221101</creationdate><title>Light-sheet 3D microprinting via two-colour two-step absorption</title><author>Hahn, Vincent ; Rietz, Pascal ; Hermann, Frank ; Müller, Patrick ; Barner-Kowollik, Christopher ; Schlöder, Tobias ; Wenzel, Wolfgang ; Blasco, Eva ; Wegener, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/624/1075/1080</topic><topic>639/624/1107/1109</topic><topic>639/624/399/1028</topic><topic>639/638/439</topic><topic>639/925/357/1015</topic><topic>Absorption</topic><topic>Applied and Technical Physics</topic><topic>Color</topic><topic>Continuous wave lasers</topic><topic>Femtosecond pulsed lasers</topic><topic>High resolution</topic><topic>High speed</topic><topic>Indigo</topic><topic>Lasers</topic><topic>Light sheets</topic><topic>Microprinting</topic><topic>Nonlinear optics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Optics</topic><topic>Photoinitiators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymers</topic><topic>Printing</topic><topic>Quantum Physics</topic><topic>Semiconductor lasers</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hahn, Vincent</creatorcontrib><creatorcontrib>Rietz, Pascal</creatorcontrib><creatorcontrib>Hermann, Frank</creatorcontrib><creatorcontrib>Müller, Patrick</creatorcontrib><creatorcontrib>Barner-Kowollik, Christopher</creatorcontrib><creatorcontrib>Schlöder, Tobias</creatorcontrib><creatorcontrib>Wenzel, Wolfgang</creatorcontrib><creatorcontrib>Blasco, Eva</creatorcontrib><creatorcontrib>Wegener, Martin</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hahn, Vincent</au><au>Rietz, Pascal</au><au>Hermann, Frank</au><au>Müller, Patrick</au><au>Barner-Kowollik, Christopher</au><au>Schlöder, Tobias</au><au>Wenzel, Wolfgang</au><au>Blasco, Eva</au><au>Wegener, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-sheet 3D microprinting via two-colour two-step absorption</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>16</volume><issue>11</issue><spage>784</spage><epage>791</epage><pages>784-791</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>High-speed high-resolution 3D printing of polymers is highly desirable for many applications, yet still technologically challenging. Today, optics-based printing is in the lead. Projection-based linear optical approaches have achieved high printing rates of around 10 6  voxels s –1 , although at voxel volumes of &gt;100 μm 3 . Scanning-based nonlinear optical approaches have achieved voxel volumes of &lt;1 μm 3 , but suffer from low printing speed or high cost because of the required femtosecond lasers. Here we present an approach that we refer to as light-sheet 3D laser microprinting. It combines image projection with an AND-type optical nonlinearity based on two-colour two-step absorption. The underlying photoresin is composed of 2,3-butanedione as the photoinitiator, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl as the scavenger and dipentaerythritol hexaacrylate as the multifunctional monomer. Using continuous-wave laser diodes at 440 nm wavelength for projection and a continuous-wave laser at 660 nm for the light-sheet, we achieve a peak printing rate of 7 × 10 6  voxels s –1 at a voxel volume of 0.55 μm 3 . High-speed, high-resolution optics-based printing typically requires femtosecond pulsed lasers. We demonstrate optical printing using indigo-blue laser diodes and a red continuous-wave laser, achieving a peak printing rate of 7 × 10 6  voxels s –1 at a voxel volume of 0.55 µm 3 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-022-01081-0</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3229-3285</orcidid><orcidid>https://orcid.org/0000-0002-9770-2441</orcidid><orcidid>https://orcid.org/0000-0002-0849-4223</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2022-11, Vol.16 (11), p.784-791
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2729316637
source Nature
subjects 639/624/1075/1080
639/624/1107/1109
639/624/399/1028
639/638/439
639/925/357/1015
Absorption
Applied and Technical Physics
Color
Continuous wave lasers
Femtosecond pulsed lasers
High resolution
High speed
Indigo
Lasers
Light sheets
Microprinting
Nonlinear optics
Nonlinear systems
Nonlinearity
Optics
Photoinitiators
Physics
Physics and Astronomy
Polymers
Printing
Quantum Physics
Semiconductor lasers
Three dimensional printing
title Light-sheet 3D microprinting via two-colour two-step absorption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-sheet%203D%20microprinting%20via%20two-colour%20two-step%20absorption&rft.jtitle=Nature%20photonics&rft.au=Hahn,%20Vincent&rft.date=2022-11-01&rft.volume=16&rft.issue=11&rft.spage=784&rft.epage=791&rft.pages=784-791&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-022-01081-0&rft_dat=%3Cproquest_cross%3E2729316637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b09b119d83ef3742699867ea0cd546315facae95366518e440c4772af20105d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729316637&rft_id=info:pmid/&rfr_iscdi=true