Loading…

On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels

In this note, we extend the known results on the existence and uniqueness of weak solutions to conservation laws with nonlocal flux. In case the nonlocal term is given by a convolution γ ∗ q , we weaken the standard assumption on the kernel γ ∈ L ∞ ( ( 0 , T ) ; W 1 , ∞ ( R ) ) to the substantially...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Physik 2022-12, Vol.73 (6), Article 241
Main Authors: Coclite, Giuseppe Maria, De Nitti, Nicola, Keimer, Alexander, Pflug, Lukas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-e6a71143a9c1a8cd1d3a1da4fc73bbdbb6befbbbafb4520c8d39952874728bd03
cites cdi_FETCH-LOGICAL-c293t-e6a71143a9c1a8cd1d3a1da4fc73bbdbb6befbbbafb4520c8d39952874728bd03
container_end_page
container_issue 6
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 73
creator Coclite, Giuseppe Maria
De Nitti, Nicola
Keimer, Alexander
Pflug, Lukas
description In this note, we extend the known results on the existence and uniqueness of weak solutions to conservation laws with nonlocal flux. In case the nonlocal term is given by a convolution γ ∗ q , we weaken the standard assumption on the kernel γ ∈ L ∞ ( ( 0 , T ) ; W 1 , ∞ ( R ) ) to the substantially more general condition γ ∈ L ∞ ( ( 0 , T ) ; B V ( R ) ) , which allows for discontinuities in the kernel.
doi_str_mv 10.1007/s00033-022-01766-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729559953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729559953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e6a71143a9c1a8cd1d3a1da4fc73bbdbb6befbbbafb4520c8d39952874728bd03</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOdhInI1R8SZW6AAuDZTsOpA12sRMC_x6XILExnXT33HunB6FTCucUQFxEAOCcAGMEqCgKAntoRjMGpAJe7aMZQJYRxkR-iI5iXCdcUOAz9Lxy2H62sbfOWKxcjQfXvg_W2Rixb_Bo1QZH3w19613EvcfOu84b1WGTGjZ8qN0Ed2qMeGz7V3z1hDc2ONvFY3TQqC7ak986R4831w-LO7Jc3d4vLpfEsIr3xBZKUJpxVRmqSlPTmitaq6wxgmtda11o22itVaOznIEpa15VOStFJlipa-BzdDblboNPr8derv0QXDopmWBVniecJ4pNlAk-xmAbuQ3tmwpfkoLcSZSTRJkkyh-JchfNp6WYYPdiw1_0P1vfGwd2ag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729559953</pqid></control><display><type>article</type><title>On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels</title><source>Springer Nature</source><creator>Coclite, Giuseppe Maria ; De Nitti, Nicola ; Keimer, Alexander ; Pflug, Lukas</creator><creatorcontrib>Coclite, Giuseppe Maria ; De Nitti, Nicola ; Keimer, Alexander ; Pflug, Lukas</creatorcontrib><description>In this note, we extend the known results on the existence and uniqueness of weak solutions to conservation laws with nonlocal flux. In case the nonlocal term is given by a convolution γ ∗ q , we weaken the standard assumption on the kernel γ ∈ L ∞ ( ( 0 , T ) ; W 1 , ∞ ( R ) ) to the substantially more general condition γ ∈ L ∞ ( ( 0 , T ) ; B V ( R ) ) , which allows for discontinuities in the kernel.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-022-01766-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Conservation laws ; Engineering ; Kernels ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics ; Uniqueness</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-12, Vol.73 (6), Article 241</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e6a71143a9c1a8cd1d3a1da4fc73bbdbb6befbbbafb4520c8d39952874728bd03</citedby><cites>FETCH-LOGICAL-c293t-e6a71143a9c1a8cd1d3a1da4fc73bbdbb6befbbbafb4520c8d39952874728bd03</cites><orcidid>0000-0001-6019-4757 ; 0000-0001-8001-5832 ; 0000-0003-0402-7502 ; 0000-0003-3825-5853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Coclite, Giuseppe Maria</creatorcontrib><creatorcontrib>De Nitti, Nicola</creatorcontrib><creatorcontrib>Keimer, Alexander</creatorcontrib><creatorcontrib>Pflug, Lukas</creatorcontrib><title>On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this note, we extend the known results on the existence and uniqueness of weak solutions to conservation laws with nonlocal flux. In case the nonlocal term is given by a convolution γ ∗ q , we weaken the standard assumption on the kernel γ ∈ L ∞ ( ( 0 , T ) ; W 1 , ∞ ( R ) ) to the substantially more general condition γ ∈ L ∞ ( ( 0 , T ) ; B V ( R ) ) , which allows for discontinuities in the kernel.</description><subject>Conservation laws</subject><subject>Engineering</subject><subject>Kernels</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Uniqueness</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOdhInI1R8SZW6AAuDZTsOpA12sRMC_x6XILExnXT33HunB6FTCucUQFxEAOCcAGMEqCgKAntoRjMGpAJe7aMZQJYRxkR-iI5iXCdcUOAz9Lxy2H62sbfOWKxcjQfXvg_W2Rixb_Bo1QZH3w19613EvcfOu84b1WGTGjZ8qN0Ed2qMeGz7V3z1hDc2ONvFY3TQqC7ak986R4831w-LO7Jc3d4vLpfEsIr3xBZKUJpxVRmqSlPTmitaq6wxgmtda11o22itVaOznIEpa15VOStFJlipa-BzdDblboNPr8derv0QXDopmWBVniecJ4pNlAk-xmAbuQ3tmwpfkoLcSZSTRJkkyh-JchfNp6WYYPdiw1_0P1vfGwd2ag</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Coclite, Giuseppe Maria</creator><creator>De Nitti, Nicola</creator><creator>Keimer, Alexander</creator><creator>Pflug, Lukas</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6019-4757</orcidid><orcidid>https://orcid.org/0000-0001-8001-5832</orcidid><orcidid>https://orcid.org/0000-0003-0402-7502</orcidid><orcidid>https://orcid.org/0000-0003-3825-5853</orcidid></search><sort><creationdate>20221201</creationdate><title>On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels</title><author>Coclite, Giuseppe Maria ; De Nitti, Nicola ; Keimer, Alexander ; Pflug, Lukas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e6a71143a9c1a8cd1d3a1da4fc73bbdbb6befbbbafb4520c8d39952874728bd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conservation laws</topic><topic>Engineering</topic><topic>Kernels</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coclite, Giuseppe Maria</creatorcontrib><creatorcontrib>De Nitti, Nicola</creatorcontrib><creatorcontrib>Keimer, Alexander</creatorcontrib><creatorcontrib>Pflug, Lukas</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coclite, Giuseppe Maria</au><au>De Nitti, Nicola</au><au>Keimer, Alexander</au><au>Pflug, Lukas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>73</volume><issue>6</issue><artnum>241</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this note, we extend the known results on the existence and uniqueness of weak solutions to conservation laws with nonlocal flux. In case the nonlocal term is given by a convolution γ ∗ q , we weaken the standard assumption on the kernel γ ∈ L ∞ ( ( 0 , T ) ; W 1 , ∞ ( R ) ) to the substantially more general condition γ ∈ L ∞ ( ( 0 , T ) ; B V ( R ) ) , which allows for discontinuities in the kernel.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-022-01766-0</doi><orcidid>https://orcid.org/0000-0001-6019-4757</orcidid><orcidid>https://orcid.org/0000-0001-8001-5832</orcidid><orcidid>https://orcid.org/0000-0003-0402-7502</orcidid><orcidid>https://orcid.org/0000-0003-3825-5853</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2022-12, Vol.73 (6), Article 241
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2729559953
source Springer Nature
subjects Conservation laws
Engineering
Kernels
Mathematical Methods in Physics
Theoretical and Applied Mechanics
Uniqueness
title On existence and uniqueness of weak solutions to nonlocal conservation laws with BV kernels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20existence%20and%20uniqueness%20of%20weak%20solutions%20to%20nonlocal%20conservation%20laws%20with%20BV%20kernels&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Coclite,%20Giuseppe%20Maria&rft.date=2022-12-01&rft.volume=73&rft.issue=6&rft.artnum=241&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-022-01766-0&rft_dat=%3Cproquest_cross%3E2729559953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-e6a71143a9c1a8cd1d3a1da4fc73bbdbb6befbbbafb4520c8d39952874728bd03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2729559953&rft_id=info:pmid/&rfr_iscdi=true