Loading…
Diverse Parallel Data Synthesis for Cross-Database Adaptation of Text-to-SQL Parsers
Text-to-SQL parsers typically struggle with databases unseen during the train time. Adapting parsers to new databases is a challenging problem due to the lack of natural language queries in the new schemas. We present ReFill, a framework for synthesizing high-quality and textually diverse parallel d...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Awasthi, Abhijeet Sathe, Ashutosh Sarawagi, Sunita |
description | Text-to-SQL parsers typically struggle with databases unseen during the train time. Adapting parsers to new databases is a challenging problem due to the lack of natural language queries in the new schemas. We present ReFill, a framework for synthesizing high-quality and textually diverse parallel datasets for adapting a Text-to-SQL parser to a target schema. ReFill learns to retrieve-and-edit text queries from the existing schemas and transfers them to the target schema. We show that retrieving diverse existing text, masking their schema-specific tokens, and refilling with tokens relevant to the target schema, leads to significantly more diverse text queries than achievable by standard SQL-to-Text generation methods. Through experiments spanning multiple databases, we demonstrate that fine-tuning parsers on datasets synthesized using ReFill consistently outperforms the prior data-augmentation methods. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2730891581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730891581</sourcerecordid><originalsourceid>FETCH-proquest_journals_27308915813</originalsourceid><addsrcrecordid>eNqNjMEKgkAUAJcgSMp_WOi8sO5m2jG06NCh0Lu8aCVl8dm-NervU-gDOs1hhpmxQGkdiXSj1IKFRK2UUm0TFcc6YGXevIwjwy_gwFpjeQ4eePHp_MNQQ7xGxzOHRGISNxjT_R16D77BjmPNS_P2wqMorudpQuNtxeY1WDLhj0u2Ph7K7CR6h8_BkK9aHFw3qkolWqa7KE4j_V_1BR-oP7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730891581</pqid></control><display><type>article</type><title>Diverse Parallel Data Synthesis for Cross-Database Adaptation of Text-to-SQL Parsers</title><source>Publicly Available Content Database</source><creator>Awasthi, Abhijeet ; Sathe, Ashutosh ; Sarawagi, Sunita</creator><creatorcontrib>Awasthi, Abhijeet ; Sathe, Ashutosh ; Sarawagi, Sunita</creatorcontrib><description>Text-to-SQL parsers typically struggle with databases unseen during the train time. Adapting parsers to new databases is a challenging problem due to the lack of natural language queries in the new schemas. We present ReFill, a framework for synthesizing high-quality and textually diverse parallel datasets for adapting a Text-to-SQL parser to a target schema. ReFill learns to retrieve-and-edit text queries from the existing schemas and transfers them to the target schema. We show that retrieving diverse existing text, masking their schema-specific tokens, and refilling with tokens relevant to the target schema, leads to significantly more diverse text queries than achievable by standard SQL-to-Text generation methods. Through experiments spanning multiple databases, we demonstrate that fine-tuning parsers on datasets synthesized using ReFill consistently outperforms the prior data-augmentation methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Parsers ; Queries ; Query languages ; Refilling ; Synthesis</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2730891581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Awasthi, Abhijeet</creatorcontrib><creatorcontrib>Sathe, Ashutosh</creatorcontrib><creatorcontrib>Sarawagi, Sunita</creatorcontrib><title>Diverse Parallel Data Synthesis for Cross-Database Adaptation of Text-to-SQL Parsers</title><title>arXiv.org</title><description>Text-to-SQL parsers typically struggle with databases unseen during the train time. Adapting parsers to new databases is a challenging problem due to the lack of natural language queries in the new schemas. We present ReFill, a framework for synthesizing high-quality and textually diverse parallel datasets for adapting a Text-to-SQL parser to a target schema. ReFill learns to retrieve-and-edit text queries from the existing schemas and transfers them to the target schema. We show that retrieving diverse existing text, masking their schema-specific tokens, and refilling with tokens relevant to the target schema, leads to significantly more diverse text queries than achievable by standard SQL-to-Text generation methods. Through experiments spanning multiple databases, we demonstrate that fine-tuning parsers on datasets synthesized using ReFill consistently outperforms the prior data-augmentation methods.</description><subject>Datasets</subject><subject>Parsers</subject><subject>Queries</subject><subject>Query languages</subject><subject>Refilling</subject><subject>Synthesis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMEKgkAUAJcgSMp_WOi8sO5m2jG06NCh0Lu8aCVl8dm-NervU-gDOs1hhpmxQGkdiXSj1IKFRK2UUm0TFcc6YGXevIwjwy_gwFpjeQ4eePHp_MNQQ7xGxzOHRGISNxjT_R16D77BjmPNS_P2wqMorudpQuNtxeY1WDLhj0u2Ph7K7CR6h8_BkK9aHFw3qkolWqa7KE4j_V_1BR-oP7M</recordid><startdate>20221029</startdate><enddate>20221029</enddate><creator>Awasthi, Abhijeet</creator><creator>Sathe, Ashutosh</creator><creator>Sarawagi, Sunita</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221029</creationdate><title>Diverse Parallel Data Synthesis for Cross-Database Adaptation of Text-to-SQL Parsers</title><author>Awasthi, Abhijeet ; Sathe, Ashutosh ; Sarawagi, Sunita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27308915813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Parsers</topic><topic>Queries</topic><topic>Query languages</topic><topic>Refilling</topic><topic>Synthesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Awasthi, Abhijeet</creatorcontrib><creatorcontrib>Sathe, Ashutosh</creatorcontrib><creatorcontrib>Sarawagi, Sunita</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awasthi, Abhijeet</au><au>Sathe, Ashutosh</au><au>Sarawagi, Sunita</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Diverse Parallel Data Synthesis for Cross-Database Adaptation of Text-to-SQL Parsers</atitle><jtitle>arXiv.org</jtitle><date>2022-10-29</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Text-to-SQL parsers typically struggle with databases unseen during the train time. Adapting parsers to new databases is a challenging problem due to the lack of natural language queries in the new schemas. We present ReFill, a framework for synthesizing high-quality and textually diverse parallel datasets for adapting a Text-to-SQL parser to a target schema. ReFill learns to retrieve-and-edit text queries from the existing schemas and transfers them to the target schema. We show that retrieving diverse existing text, masking their schema-specific tokens, and refilling with tokens relevant to the target schema, leads to significantly more diverse text queries than achievable by standard SQL-to-Text generation methods. Through experiments spanning multiple databases, we demonstrate that fine-tuning parsers on datasets synthesized using ReFill consistently outperforms the prior data-augmentation methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2730891581 |
source | Publicly Available Content Database |
subjects | Datasets Parsers Queries Query languages Refilling Synthesis |
title | Diverse Parallel Data Synthesis for Cross-Database Adaptation of Text-to-SQL Parsers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Diverse%20Parallel%20Data%20Synthesis%20for%20Cross-Database%20Adaptation%20of%20Text-to-SQL%20Parsers&rft.jtitle=arXiv.org&rft.au=Awasthi,%20Abhijeet&rft.date=2022-10-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2730891581%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27308915813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2730891581&rft_id=info:pmid/&rfr_iscdi=true |