Loading…
High-precision EPMA measurement of trace elements in ilmenite and reference material development
Ilmenite occurs as a common accessory mineral in igneous and metamorphic rocks and is a major constituent in lunar basaltic rocks. The distributions and concentrations of major and trace elements in ilmenite have potential to record temporal changes in melt chemistry and crystal fractionation proces...
Saved in:
Published in: | Journal of analytical atomic spectrometry 2022-11, Vol.37 (11), p.2351-2361 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ilmenite occurs as a common accessory mineral in igneous and metamorphic rocks and is a major constituent in lunar basaltic rocks. The distributions and concentrations of major and trace elements in ilmenite have potential to record temporal changes in melt chemistry and crystal fractionation processes. However, such data are scarce because of the limitations of
in situ
microanalytical technology, the lack of reference materials for trace elements, and the difficulties in analyzing the small needle-like shape of ilmenite. In this study, a natural ilmenite sample derived from the Panzhihua Fe-Ti-V oxide ore deposit was characterized for its major and trace elements in relation to the potential use as reference material. The homogeneity of the studied ilmenite (PZH12-09) was assessed by electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). It is homogeneous with relative standard deviation (RSD) values within ±3.76% for major elements (Fe, Ti, Mg, and Mn) and ±12.6% for trace elements (Sc, V, Cr, Co, Ni, Zr, Nb, Hf, and Ta), respectively. The relative deviations for major and trace elements determined by solution-mode ICP-MS and
in situ
microanalysis range from 0.11% to 7.71%, suggesting that the PZH12-09 ilmenite can be used as a reference material for
in situ
microanalysis. Furthermore, we developed a high-precision EPMA method to simultaneously determine the major and trace elements of ilmenite. The disadvantage of high detection limits and poor accuracy in trace element analyses were overcome by optimizing the analytical conditions, including the accelerating voltage (20 kV), beam current (200 nA), use of large Bragg crystals (LPET and LLIF), aggregate intensity counting, peak overlap and secondary standard corrections. The measured concentrations of most trace elements are consistent within 10% relative deviation compared with the reference values. The RSD values were within ±15% at various concentrations of trace elements (except for Ni and Nb), indicating the high accuracy and precision characteristics of the EPMA methodology. Detection limits for the trace elements vary from 11 to 27 μg g
−1
(3
σ
). The developed method should provide robust trace element data for both extraterrestrial and terrestrial ilmenite samples at high spatial resolution (1-2 μm).
A natural ilmenite (PZH12-09) is homogeneous and thus suitable for use as a reference material for
in situ
microanalysis. An EPMA method was |
---|---|
ISSN: | 0267-9477 1364-5544 |
DOI: | 10.1039/d2ja00238h |