Loading…

Mott-Driven BEC-BCS Crossover in a Doped Spin Liquid Candidate κ−(BEDT−TTF)4Hg2.89Br8

The pairing of interacting fermions leading to superfluidity has two limiting regimes: the Bardeen-Cooper-Schrieffer (BCS) scheme for weakly interacting degenerate fermions and the Bose-Einstein condensation (BEC) of bosonic pairs of strongly interacting fermions. While the superconductivity that em...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2022-03, Vol.12 (1)
Main Authors: Suzuki, Y, Wakamatsu, K, Ibuka, J, Oike, H, Fujii, T, Miyagawa, K, Taniguchi, H, Kanoda, K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title Physical review. X
container_volume 12
creator Suzuki, Y
Wakamatsu, K
Ibuka, J
Oike, H
Fujii, T
Miyagawa, K
Taniguchi, H
Kanoda, K
description The pairing of interacting fermions leading to superfluidity has two limiting regimes: the Bardeen-Cooper-Schrieffer (BCS) scheme for weakly interacting degenerate fermions and the Bose-Einstein condensation (BEC) of bosonic pairs of strongly interacting fermions. While the superconductivity that emerges in most metallic systems is the BCS-like electron pairing, strongly correlated electrons with poor Fermi liquidity can condense into the unconventional BEC-like pairs. Quantum spin liquids harbor extraordinary spin correlation free from order, and the superconductivity that possibly emerges by carrier doping of the spin liquids is expected to have a peculiar pairing nature. The present study experimentally explores the nature of the pairing condensate in a doped spin liquid candidate material and under varying pressure, which changes the electron-electron Coulombic interactions across the Mott critical value in the system. The transport measurements reveal that the superconductivity at low pressures is a BEC-like condensate from a non-Fermi liquid and crosses over to a BCS-like condensate from a Fermi liquid at high pressures. The Nernst-effect measurements distinctively illustrate the two regimes of the pairing in terms of its robustness to the magnetic field. The present Mott tuning of the BEC-BCS crossover can be compared to the Feshbach tuning of the BEC-BCS crossover of fermionic cold atoms.
doi_str_mv 10.1103/PhysRevX.12.011016
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2731133332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731133332</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-45b12a7c08fd8d81dea0aac34e71a2069e36aa68a2c60d834d9bc61f717e2cd3</originalsourceid><addsrcrecordid>eNotjU9KxDAchYMgOIxzAVcBN7pIzS-pSbq0f2ZGqChOF-JmyDSpdpCm07QFb-Da43gID-FJLOi3-Xhv8R5CZ0ADAMqvHl7f_aMdnwJgAZ0aEEdoxkBQwjlVJ2jh_Z5OCAqhlDP0fOf6nqRdPdoGx1lC4mSDk85570bb4brBGqeutQZv2ink9WGoDU50Y2qje4u_v34-Pi_iLC0mF8XyMly_sEBFcadO0XGl37xd_HuOimVWJGuS369uk5uctKB4T8LrHTAtS6oqo4wCYzXVuuShlaAZFZHlQmuhNCsFNYqHJtqVAioJ0rLS8Dk6_5ttO3cYrO-3ezd0zfS4ZZID8AnGfwFwYlP2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731133332</pqid></control><display><type>article</type><title>Mott-Driven BEC-BCS Crossover in a Doped Spin Liquid Candidate κ−(BEDT−TTF)4Hg2.89Br8</title><source>Publicly Available Content Database</source><creator>Suzuki, Y ; Wakamatsu, K ; Ibuka, J ; Oike, H ; Fujii, T ; Miyagawa, K ; Taniguchi, H ; Kanoda, K</creator><creatorcontrib>Suzuki, Y ; Wakamatsu, K ; Ibuka, J ; Oike, H ; Fujii, T ; Miyagawa, K ; Taniguchi, H ; Kanoda, K</creatorcontrib><description>The pairing of interacting fermions leading to superfluidity has two limiting regimes: the Bardeen-Cooper-Schrieffer (BCS) scheme for weakly interacting degenerate fermions and the Bose-Einstein condensation (BEC) of bosonic pairs of strongly interacting fermions. While the superconductivity that emerges in most metallic systems is the BCS-like electron pairing, strongly correlated electrons with poor Fermi liquidity can condense into the unconventional BEC-like pairs. Quantum spin liquids harbor extraordinary spin correlation free from order, and the superconductivity that possibly emerges by carrier doping of the spin liquids is expected to have a peculiar pairing nature. The present study experimentally explores the nature of the pairing condensate in a doped spin liquid candidate material and under varying pressure, which changes the electron-electron Coulombic interactions across the Mott critical value in the system. The transport measurements reveal that the superconductivity at low pressures is a BEC-like condensate from a non-Fermi liquid and crosses over to a BCS-like condensate from a Fermi liquid at high pressures. The Nernst-effect measurements distinctively illustrate the two regimes of the pairing in terms of its robustness to the magnetic field. The present Mott tuning of the BEC-BCS crossover can be compared to the Feshbach tuning of the BEC-BCS crossover of fermionic cold atoms.</description><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.12.011016</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Absolute zero ; Cold atoms ; Condensates ; Constraining ; Electrons ; Fermi liquids ; Fermions ; Materials selection ; Organic superconductors ; Spin liquid ; Superconductivity ; Superfluidity ; Tuning</subject><ispartof>Physical review. X, 2022-03, Vol.12 (1)</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2731133332?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Suzuki, Y</creatorcontrib><creatorcontrib>Wakamatsu, K</creatorcontrib><creatorcontrib>Ibuka, J</creatorcontrib><creatorcontrib>Oike, H</creatorcontrib><creatorcontrib>Fujii, T</creatorcontrib><creatorcontrib>Miyagawa, K</creatorcontrib><creatorcontrib>Taniguchi, H</creatorcontrib><creatorcontrib>Kanoda, K</creatorcontrib><title>Mott-Driven BEC-BCS Crossover in a Doped Spin Liquid Candidate κ−(BEDT−TTF)4Hg2.89Br8</title><title>Physical review. X</title><description>The pairing of interacting fermions leading to superfluidity has two limiting regimes: the Bardeen-Cooper-Schrieffer (BCS) scheme for weakly interacting degenerate fermions and the Bose-Einstein condensation (BEC) of bosonic pairs of strongly interacting fermions. While the superconductivity that emerges in most metallic systems is the BCS-like electron pairing, strongly correlated electrons with poor Fermi liquidity can condense into the unconventional BEC-like pairs. Quantum spin liquids harbor extraordinary spin correlation free from order, and the superconductivity that possibly emerges by carrier doping of the spin liquids is expected to have a peculiar pairing nature. The present study experimentally explores the nature of the pairing condensate in a doped spin liquid candidate material and under varying pressure, which changes the electron-electron Coulombic interactions across the Mott critical value in the system. The transport measurements reveal that the superconductivity at low pressures is a BEC-like condensate from a non-Fermi liquid and crosses over to a BCS-like condensate from a Fermi liquid at high pressures. The Nernst-effect measurements distinctively illustrate the two regimes of the pairing in terms of its robustness to the magnetic field. The present Mott tuning of the BEC-BCS crossover can be compared to the Feshbach tuning of the BEC-BCS crossover of fermionic cold atoms.</description><subject>Absolute zero</subject><subject>Cold atoms</subject><subject>Condensates</subject><subject>Constraining</subject><subject>Electrons</subject><subject>Fermi liquids</subject><subject>Fermions</subject><subject>Materials selection</subject><subject>Organic superconductors</subject><subject>Spin liquid</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Tuning</subject><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU9KxDAchYMgOIxzAVcBN7pIzS-pSbq0f2ZGqChOF-JmyDSpdpCm07QFb-Da43gID-FJLOi3-Xhv8R5CZ0ADAMqvHl7f_aMdnwJgAZ0aEEdoxkBQwjlVJ2jh_Z5OCAqhlDP0fOf6nqRdPdoGx1lC4mSDk85570bb4brBGqeutQZv2ink9WGoDU50Y2qje4u_v34-Pi_iLC0mF8XyMly_sEBFcadO0XGl37xd_HuOimVWJGuS369uk5uctKB4T8LrHTAtS6oqo4wCYzXVuuShlaAZFZHlQmuhNCsFNYqHJtqVAioJ0rLS8Dk6_5ttO3cYrO-3ezd0zfS4ZZID8AnGfwFwYlP2</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Suzuki, Y</creator><creator>Wakamatsu, K</creator><creator>Ibuka, J</creator><creator>Oike, H</creator><creator>Fujii, T</creator><creator>Miyagawa, K</creator><creator>Taniguchi, H</creator><creator>Kanoda, K</creator><general>American Physical Society</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220301</creationdate><title>Mott-Driven BEC-BCS Crossover in a Doped Spin Liquid Candidate κ−(BEDT−TTF)4Hg2.89Br8</title><author>Suzuki, Y ; Wakamatsu, K ; Ibuka, J ; Oike, H ; Fujii, T ; Miyagawa, K ; Taniguchi, H ; Kanoda, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-45b12a7c08fd8d81dea0aac34e71a2069e36aa68a2c60d834d9bc61f717e2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absolute zero</topic><topic>Cold atoms</topic><topic>Condensates</topic><topic>Constraining</topic><topic>Electrons</topic><topic>Fermi liquids</topic><topic>Fermions</topic><topic>Materials selection</topic><topic>Organic superconductors</topic><topic>Spin liquid</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Y</creatorcontrib><creatorcontrib>Wakamatsu, K</creatorcontrib><creatorcontrib>Ibuka, J</creatorcontrib><creatorcontrib>Oike, H</creatorcontrib><creatorcontrib>Fujii, T</creatorcontrib><creatorcontrib>Miyagawa, K</creatorcontrib><creatorcontrib>Taniguchi, H</creatorcontrib><creatorcontrib>Kanoda, K</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Y</au><au>Wakamatsu, K</au><au>Ibuka, J</au><au>Oike, H</au><au>Fujii, T</au><au>Miyagawa, K</au><au>Taniguchi, H</au><au>Kanoda, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mott-Driven BEC-BCS Crossover in a Doped Spin Liquid Candidate κ−(BEDT−TTF)4Hg2.89Br8</atitle><jtitle>Physical review. X</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><eissn>2160-3308</eissn><abstract>The pairing of interacting fermions leading to superfluidity has two limiting regimes: the Bardeen-Cooper-Schrieffer (BCS) scheme for weakly interacting degenerate fermions and the Bose-Einstein condensation (BEC) of bosonic pairs of strongly interacting fermions. While the superconductivity that emerges in most metallic systems is the BCS-like electron pairing, strongly correlated electrons with poor Fermi liquidity can condense into the unconventional BEC-like pairs. Quantum spin liquids harbor extraordinary spin correlation free from order, and the superconductivity that possibly emerges by carrier doping of the spin liquids is expected to have a peculiar pairing nature. The present study experimentally explores the nature of the pairing condensate in a doped spin liquid candidate material and under varying pressure, which changes the electron-electron Coulombic interactions across the Mott critical value in the system. The transport measurements reveal that the superconductivity at low pressures is a BEC-like condensate from a non-Fermi liquid and crosses over to a BCS-like condensate from a Fermi liquid at high pressures. The Nernst-effect measurements distinctively illustrate the two regimes of the pairing in terms of its robustness to the magnetic field. The present Mott tuning of the BEC-BCS crossover can be compared to the Feshbach tuning of the BEC-BCS crossover of fermionic cold atoms.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.12.011016</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2160-3308
ispartof Physical review. X, 2022-03, Vol.12 (1)
issn 2160-3308
language eng
recordid cdi_proquest_journals_2731133332
source Publicly Available Content Database
subjects Absolute zero
Cold atoms
Condensates
Constraining
Electrons
Fermi liquids
Fermions
Materials selection
Organic superconductors
Spin liquid
Superconductivity
Superfluidity
Tuning
title Mott-Driven BEC-BCS Crossover in a Doped Spin Liquid Candidate κ−(BEDT−TTF)4Hg2.89Br8
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mott-Driven%20BEC-BCS%20Crossover%20in%20a%20Doped%20Spin%20Liquid%20Candidate%20%CE%BA%E2%88%92(BEDT%E2%88%92TTF)4Hg2.89Br8&rft.jtitle=Physical%20review.%20X&rft.au=Suzuki,%20Y&rft.date=2022-03-01&rft.volume=12&rft.issue=1&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.12.011016&rft_dat=%3Cproquest%3E2731133332%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-45b12a7c08fd8d81dea0aac34e71a2069e36aa68a2c60d834d9bc61f717e2cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731133332&rft_id=info:pmid/&rfr_iscdi=true