Loading…

Numerical analysis for a system coupling curve evolution attached orthogonally to a fixed boundary, to a reaction–diffusion equation on the curve

We consider a semidiscrete finite element approximation for a system consisting of the evolution of a planar curve evolving by forced curve shortening flow inside a given bounded domain Ω⊂ℝ2, such that the curve meets the boundary ∂Ω orthogonally, and the forcing is a function of the solution of a r...

Full description

Saved in:
Bibliographic Details
Published in:Numerical methods for partial differential equations 2023-01, Vol.39 (1), p.133-162
Main Authors: Styles, Vanessa, Van Yperen, James
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2921-16d25e658979cb9239f17d9d6f5a29a5e0eb3fa72c823064c0527fd8f666f5ce3
container_end_page 162
container_issue 1
container_start_page 133
container_title Numerical methods for partial differential equations
container_volume 39
creator Styles, Vanessa
Van Yperen, James
description We consider a semidiscrete finite element approximation for a system consisting of the evolution of a planar curve evolving by forced curve shortening flow inside a given bounded domain Ω⊂ℝ2, such that the curve meets the boundary ∂Ω orthogonally, and the forcing is a function of the solution of a reaction–diffusion equation that holds on the evolving curve. We prove optimal order H1 error bounds for the resulting approximation and present numerical experiments.
doi_str_mv 10.1002/num.22861
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731665564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731665564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2921-16d25e658979cb9239f17d9d6f5a29a5e0eb3fa72c823064c0527fd8f666f5ce3</originalsourceid><addsrcrecordid>eNp1kN9KwzAUxoMoOKcXvkHAK8FuSdqkzaUM_8GcNw68K1mabB1tsyXNtHe-w97QJzFbvRUOHDj8vu_wfQBcYzTCCJFx4-sRIRnDJ2CAEc8ikhB2CgYoTXiEKf84BxfOrRHCmGI-APuZr5UtpaigaETVudJBbSwU0HWuVTWUxm-qsllC6e1OQbUzlW9L00DRtkKuVAGNbVdmaYK66mBrglSXX-G-ML4phO3u-qNVQh6EP9_7otTau4OJ2npxdAvTrlT_5BKcaVE5dfW3h2D--PA-eY6mb08vk_tpJAknOMKsIFQxmvGUywUnMdc4LXjBNBWEC6qQWsRapERmJEYskYiSVBeZZiwgUsVDcNP7bqzZeuXafG28DTlcTtIYM0YpSwJ121PSGues0vnGlnXIlWOUHzrPQ-f5sfPAjnv2s6xU9z-Yz-avveIXvRuHdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731665564</pqid></control><display><type>article</type><title>Numerical analysis for a system coupling curve evolution attached orthogonally to a fixed boundary, to a reaction–diffusion equation on the curve</title><source>Wiley</source><creator>Styles, Vanessa ; Van Yperen, James</creator><creatorcontrib>Styles, Vanessa ; Van Yperen, James</creatorcontrib><description>We consider a semidiscrete finite element approximation for a system consisting of the evolution of a planar curve evolving by forced curve shortening flow inside a given bounded domain Ω⊂ℝ2, such that the curve meets the boundary ∂Ω orthogonally, and the forcing is a function of the solution of a reaction–diffusion equation that holds on the evolving curve. We prove optimal order H1 error bounds for the resulting approximation and present numerical experiments.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22861</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Approximation ; Diffusion ; error analysis ; Evolution ; forced curve shortening flow ; Mathematical analysis ; Numerical analysis ; parametric finite elements ; prescribed boundary contact ; Reaction-diffusion equations ; surface PDE</subject><ispartof>Numerical methods for partial differential equations, 2023-01, Vol.39 (1), p.133-162</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2921-16d25e658979cb9239f17d9d6f5a29a5e0eb3fa72c823064c0527fd8f666f5ce3</cites><orcidid>0000-0002-0513-1494 ; 0000-0002-0387-4067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Styles, Vanessa</creatorcontrib><creatorcontrib>Van Yperen, James</creatorcontrib><title>Numerical analysis for a system coupling curve evolution attached orthogonally to a fixed boundary, to a reaction–diffusion equation on the curve</title><title>Numerical methods for partial differential equations</title><description>We consider a semidiscrete finite element approximation for a system consisting of the evolution of a planar curve evolving by forced curve shortening flow inside a given bounded domain Ω⊂ℝ2, such that the curve meets the boundary ∂Ω orthogonally, and the forcing is a function of the solution of a reaction–diffusion equation that holds on the evolving curve. We prove optimal order H1 error bounds for the resulting approximation and present numerical experiments.</description><subject>Approximation</subject><subject>Diffusion</subject><subject>error analysis</subject><subject>Evolution</subject><subject>forced curve shortening flow</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>parametric finite elements</subject><subject>prescribed boundary contact</subject><subject>Reaction-diffusion equations</subject><subject>surface PDE</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kN9KwzAUxoMoOKcXvkHAK8FuSdqkzaUM_8GcNw68K1mabB1tsyXNtHe-w97QJzFbvRUOHDj8vu_wfQBcYzTCCJFx4-sRIRnDJ2CAEc8ikhB2CgYoTXiEKf84BxfOrRHCmGI-APuZr5UtpaigaETVudJBbSwU0HWuVTWUxm-qsllC6e1OQbUzlW9L00DRtkKuVAGNbVdmaYK66mBrglSXX-G-ML4phO3u-qNVQh6EP9_7otTau4OJ2npxdAvTrlT_5BKcaVE5dfW3h2D--PA-eY6mb08vk_tpJAknOMKsIFQxmvGUywUnMdc4LXjBNBWEC6qQWsRapERmJEYskYiSVBeZZiwgUsVDcNP7bqzZeuXafG28DTlcTtIYM0YpSwJ121PSGues0vnGlnXIlWOUHzrPQ-f5sfPAjnv2s6xU9z-Yz-avveIXvRuHdA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Styles, Vanessa</creator><creator>Van Yperen, James</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0513-1494</orcidid><orcidid>https://orcid.org/0000-0002-0387-4067</orcidid></search><sort><creationdate>202301</creationdate><title>Numerical analysis for a system coupling curve evolution attached orthogonally to a fixed boundary, to a reaction–diffusion equation on the curve</title><author>Styles, Vanessa ; Van Yperen, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2921-16d25e658979cb9239f17d9d6f5a29a5e0eb3fa72c823064c0527fd8f666f5ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Diffusion</topic><topic>error analysis</topic><topic>Evolution</topic><topic>forced curve shortening flow</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>parametric finite elements</topic><topic>prescribed boundary contact</topic><topic>Reaction-diffusion equations</topic><topic>surface PDE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Styles, Vanessa</creatorcontrib><creatorcontrib>Van Yperen, James</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Styles, Vanessa</au><au>Van Yperen, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis for a system coupling curve evolution attached orthogonally to a fixed boundary, to a reaction–diffusion equation on the curve</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2023-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>133</spage><epage>162</epage><pages>133-162</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>We consider a semidiscrete finite element approximation for a system consisting of the evolution of a planar curve evolving by forced curve shortening flow inside a given bounded domain Ω⊂ℝ2, such that the curve meets the boundary ∂Ω orthogonally, and the forcing is a function of the solution of a reaction–diffusion equation that holds on the evolving curve. We prove optimal order H1 error bounds for the resulting approximation and present numerical experiments.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22861</doi><tpages>59</tpages><orcidid>https://orcid.org/0000-0002-0513-1494</orcidid><orcidid>https://orcid.org/0000-0002-0387-4067</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2023-01, Vol.39 (1), p.133-162
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2731665564
source Wiley
subjects Approximation
Diffusion
error analysis
Evolution
forced curve shortening flow
Mathematical analysis
Numerical analysis
parametric finite elements
prescribed boundary contact
Reaction-diffusion equations
surface PDE
title Numerical analysis for a system coupling curve evolution attached orthogonally to a fixed boundary, to a reaction–diffusion equation on the curve
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20for%20a%20system%20coupling%20curve%20evolution%20attached%20orthogonally%20to%20a%20fixed%20boundary,%20to%20a%20reaction%E2%80%93diffusion%20equation%20on%20the%20curve&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Styles,%20Vanessa&rft.date=2023-01&rft.volume=39&rft.issue=1&rft.spage=133&rft.epage=162&rft.pages=133-162&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22861&rft_dat=%3Cproquest_cross%3E2731665564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2921-16d25e658979cb9239f17d9d6f5a29a5e0eb3fa72c823064c0527fd8f666f5ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731665564&rft_id=info:pmid/&rfr_iscdi=true