Loading…
Experimental study on interlaminar strength & high velocity impact response of carbon nanotube deposited glass fiber composites
Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), pe...
Saved in:
Published in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2022-11, Vol.44 (11), Article 571 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), performing as fuzzy fibers in the GFRP’s interphase. This achievement improved the load transfer capacity of composite, especially in out-of-plane and high-rate loadings. So, high velocity impact experiments with blunt and ogival projectiles are applied to investigate the CNTs position on the impact response of GFRPs. Experimental studies revealed the supremacy of EPD to improve the mechanical performance of specimen regarding simple GFRP and also conventional specimen in which CNTs just mixed in the entire matrix. The interlaminar shear strength of GFRPs is enhanced by 42% in EPD specimens. Using various lay-ups in fabrication shows that CNT deposited layers in the core of simple layers demonstrated highest deflection before failure in short beam test. EPD of CNTs improved the ballistic limit and impact energy absorption of specimens by 45% & 20% regarding simple control GFRPs and 35% & 16% regarding conventional specimen, respectively. |
---|---|
ISSN: | 1678-5878 1806-3691 |
DOI: | 10.1007/s40430-022-03881-5 |